Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Synthesis of 1-aryl-2,3-diaroyl cyclopropanes from 1,3,5-triaryl-1,5-diketones and their transformation into *E,E*-1,4-diaryl-1,3-butadienes

Kashpar John Britto,^a Maniarasu Meenakshi^a and Kannupal Srinivasan^a*

School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India

srinivasank@bdu.ac.in

Table of Contents

A.	Copies of ¹ H and ¹³ C NMR spectra for all products	
B.	ORTEP plot of the crystal structure of 8h	.S98

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of **3g**

Figure S2. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 3g

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of 3i

Figure S4. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 3i

Figure S5. ¹H NMR (400 MHz, CDCl₃) spectrum of **3m**

Figure S6. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of **3m**

Figure S7. ¹H NMR (400 MHz, CDCl₃) spectrum of **30**

Figure S8. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of **30**

Figure S9. ¹H NMR (400 MHz, CDCl₃) spectrum of 3s

Figure S10. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 3s

Figure S11. ¹H NMR (400 MHz, CDCl₃) spectrum of 9b

Figure S12. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **9b**

Figure S13. ¹H NMR (400 MHz, CDCl₃) spectrum of 4a

Figure S14. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4a

Figure S15. ¹H NMR (400 MHz, CDCl₃) spectrum of 5a

Figure S16. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 5a

Figure S17. ¹H NMR (400 MHz, CDCl₃) spectrum of 4b

Figure S18. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4b

Figure S19. ¹H NMR (400 MHz, CDCl₃) spectrum of 4c

Figure S20. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4c

Figure S21. ¹H NMR (400 MHz, CDCl₃) spectrum of 4d

Figure S22. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4d

Figure S23. ¹H NMR (400 MHz, CDCl₃) spectrum of 4e

Figure S24. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4e

Figure S25. ¹H NMR (400 MHz, CDCl₃) spectrum of 4f

Figure S26. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4f

Figure S27. ¹H NMR (400 MHz, CDCl₃) spectrum of 4g

Figure S28. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 4g

Figure S29. ¹H NMR (400 MHz, CDCl₃) spectrum of 4h

Figure S30. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4h

Figure S31. ¹H NMR (400 MHz, CDCl₃) spectrum of 4i

Figure S32. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 4i

Figure S33. ¹H NMR (400 MHz, CDCl₃) spectrum of 4j

Figure S34. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4j

Figure S35. ¹H NMR (400 MHz, CDCl₃) spectrum of 4k

Figure S36. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 4k

Figure S37. ¹H NMR (400 MHz, CDCl₃) spectrum of 4l

Figure S38. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4l

Figure S39. ¹H NMR (400 MHz, CDCl₃) spectrum of 4m

Figure S40. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 4m

Figure S41. ¹H NMR (400 MHz, CDCl₃) spectrum of 4n

Figure S42. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4n

Figure S43. ¹H NMR (400 MHz, CDCl₃) spectrum of 40

Figure S44. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 40

Figure S45. ¹H NMR (400 MHz, CDCl₃) spectrum of 4p

Figure S46. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4p

Figure S47. ¹H NMR (400 MHz, CDCl₃) spectrum of 4q

Figure S48. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4q

Figure S49. ¹H NMR (400 MHz, CDCl₃) spectrum of 4r

Figure S50. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃) spectrum of 4r

Figure S51. ¹H NMR (400 MHz, CDCl₃) spectrum of 4s

Figure S52. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 4s

Figure S53. ¹H NMR (400 MHz, CDCl₃) spectrum of 10a

Figure S54. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 10a

Figure S55. ¹H NMR (400 MHz, CDCl₃) spectrum of 10b

Figure S56. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **10b**

Figure S57. ¹H NMR (400 MHz, CDCl₃) spectrum of 6a

Figure S58. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 6a

Figure S59. ¹H NMR (400 MHz, CDCl₃) spectrum of 8a

Figure S60. $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 8a

Figure S61. ¹H NMR (400 MHz, CDCl₃) spectrum of 8b

Figure S62. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8b

Figure S63. ¹H NMR (400 MHz, CDCl₃) spectrum of 8c

Figure S64. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 8c

Figure S65. ¹H NMR (400 MHz, CDCl₃) spectrum of 8d

Figure S66. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 8d

Figure S67. ¹H NMR (400 MHz, CDCl₃) spectrum of 8e

Figure S68. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8e

Figure S69. ¹H NMR (400 MHz, CDCl₃) spectrum of 8g

Figure S70. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 8g

Figure S71. ¹H NMR (400 MHz, CDCl₃) spectrum of 8h

Figure S72. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8h

Figure S73. ¹H NMR (400 MHz, CDCl₃) spectrum of 8i

Figure S74. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8i

Figure S75. ¹H NMR (400 MHz, CDCl₃) spectrum of 8j

Figure S76. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8j

Figure S77. ¹H NMR (400 MHz, CDCl₃) spectrum of 8k

Figure S78. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8k

Figure S79. ¹H NMR (400 MHz, CDCl₃) spectrum of 81

Figure S80. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃) spectrum of 81

Figure S81. ¹H NMR (400 MHz, CDCl₃) spectrum of 8m

Figure S82. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8m

Figure S83. ¹H NMR (400 MHz, CDCl₃) spectrum of 8n

Figure S84. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8n

Figure S85. ¹H NMR (400 MHz, CDCl₃) spectrum of 80

Figure S86. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 80

Figure S87. ¹H NMR (400 MHz, CDCl₃) spectrum of 8q

Figure S88. ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 8q

Figure S89. ¹H NMR (400 MHz, CDCl₃) spectrum of 8r

Figure S90. $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) spectrum of 8r

Figure S91. ¹H NMR (400 MHz, CDCl₃) spectrum of 8s

Figure S92. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 8s

Figure S93. ¹H NMR (400 MHz, CDCl₃) spectrum of 11a

Figure S94. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 11a

Figure S95. ¹H NMR (400 MHz, CDCl₃) spectrum of 11b

Figure S96. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 11b

X-Ray structure of 8h

Figure S97. ORTEP plot of the crystal structure of 8h (at 30% probability level)

Crystal structure determination: Single crystals suitable for X-ray studies were grown by recrystallization of **8h** from hexane/DCM (9:1). X-ray data were collected on a CCD diffractometer using graphite-monochromated Mo-K α radiation.

CCDC Number for 8h	2338084
Chemical formula	C ₁₈ H ₁₈
Formula weight	234.14
Crystal system	Monoclinic
Space group	$P 2_1/c$
a (Å)	12.3661(6) A
b (Å)	7.7969(4) A
c (Å)	7.2005(3) A
α (°)	90 deg
β (°)	92.930(4) deg
γ (°)	90 deg
Volume (Å3)	693.35(6)
Ζ	2
R, wR2	0.0539, 0.1719
Goodness-of-fit on F^2	1.122

Table 1. Selected crystal parameters and refinement metrics for 8h