Batch and Continuous Packed-Bed Column Sorption of Metal Ions using Economically Derived Ca-MOF Immobilized Cellulose Porous Matrix

Anil Kumar K^a, Mohan Jujaru^a, Jitendra Panwar^b, and Suresh Gupta^{a*}

^aDepartment of Chemical Engineering, Birla Institute of Technology and Science, Pilani 333 031, India.

^bDepartment of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031, India.

* Corresponding author.

E-mail address: sureshg@pilani.bits-pilani.ac.in (S. Gupta)

Supplementary file

Table S1 Different isotherms and kinetic models were use	ed to fit the sorption e	uilibrium and kinetic data.
--	--------------------------	-----------------------------

	Non-linear Equations	Model parameters	Other variables		
Isotherm models					
Langmuir	$\theta = \frac{q_e}{q_m} = \frac{bC_e}{1 + bC_e}$ $\frac{\text{Sub Eq.}}{R_L} = \frac{1}{1 + bC_0}$	$q_{\rm m}$, monolayer sorption capacity mg g ⁻¹ . <i>b</i> , affinity of union sites.	θ , fractional coverage. $C_{\rm e}$, equilibrium concentration of solute in the solution mg L ⁻¹ . $q_{\rm e}$, equilibrium sorption capacity mg g ⁻¹ . $R_{\rm L}$, is a separation factor $C_{\rm o}$, maximum concentration at equilibrium.		
Freundlich	$q_e = K_f C_e^{\frac{1}{n}}$	$K_{\rm f}$, sorption capacity related tobond energy (mg g ⁻¹) (L mg ⁻¹) 1) n , sorption intensity.	$q_{\rm e}$, equilibrium adsorption capacity mg g ⁻¹ . $C_{\rm e}$, equilibrium concentration mg L ⁻¹ .		
Temkin	$q_e = \frac{RT}{b_T} \ln (A_T C_e)$ $\frac{\text{Sub Eq.}}{B = RT/b_T}$	$A_{\rm T}$,equilibriumbindingconstant. $b_{\rm T}$,Temkin constant.	 <i>T</i>, absolute temperature K. <i>R</i>, universal gas constant, 8.314 J mol⁻¹ K⁻¹. <i>B</i>, constant related to heat of adsorption J mol⁻¹. 		
D-R	$q_e = q_m \exp(-K\varepsilon^2)$ <u>Where;</u>	<i>K</i> , D-R constant mol ⁻² K ⁻¹ J ⁻² . $q_{\rm m}$, monolayer sorption capacity mg g ⁻¹ .	C_e , equilibrium concentration mg L ⁻¹ . T, absolute temperature K. R, universal gas constant, 8.314 J mol ⁻¹ K ⁻¹ .		

	$\varepsilon = RT * \ln\left(1 + \frac{1}{C_e}\right)$		E, mean free energy kJ mol ⁻¹ .
	$ \frac{\text{Sub Eq.}}{E = \frac{1}{\frac{1}{(2K)^2}}} $		
Kinetic models			
Pseudo-first order	$q_t = q_e \left(1 - e^{k_1 t}\right)$	q_e , equilibrium sorptioncapacity mg g ⁻¹ . k_1 , pseudo-first-order rateconstant min ⁻¹ .	$q_{\rm t}$, sorption capacity at time 't' mg g ⁻¹ .
Pseudo- second- order	$q_t = \frac{q_e^2 k_2 t}{1 + q_e k_2 t}$	$q_{\rm e}$, equilibrium sorption capacity mg g ⁻¹ . k_2 , pseudo-second-order rate constant g mg ⁻¹ min ⁻¹ .	$q_{\rm t}$, sorption capacity at time 't' mg g ⁻¹ .

Table S2 Predicted breakthrough points from the constants of the BDST model for different influent concentrations (Q: 5 mL min⁻¹, Z: 20 cm).

			300 mg L ⁻¹				
C_t/C_0	$a (\min \operatorname{cm}^{-1})$	<i>b</i> (min)	a' (min	<i>b'</i> (min)	$t_{\rm pred.}({\rm min})$	t _{exp.}	E (%)
			cm ⁻¹)			(min)	
0.01	31	300	51.66	118.51	914.81	530	72.60
0.1	38	300	63.33	145.28	1121.38	1440	-22.12
0.5	60	270	100.00	229.39	1770.61	2400	-26.22
0.9	69	200	115.00	263.79	2036.20	3140	-35.15

Fig. S1 Applicability of kinetic models for the sorption of (a) Pb⁺², (b) Cd⁺², and (c) Cu⁺² ions using Ca-MOF-CB.

Fig. S2 Applicability of isotherm models for the sorption of (a) Pb⁺², (b) Cd⁺², and (c) Cu⁺² ions using Ca-MOF-CB.

Fig. S3 Plots determining kinetic parameters of (a) intra-particle diffusion and (b) external film diffusion.

Fig. S4 Applicability of the BDST model to the experimental run.