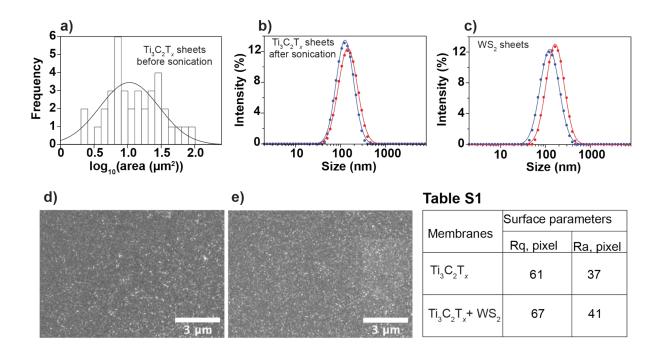
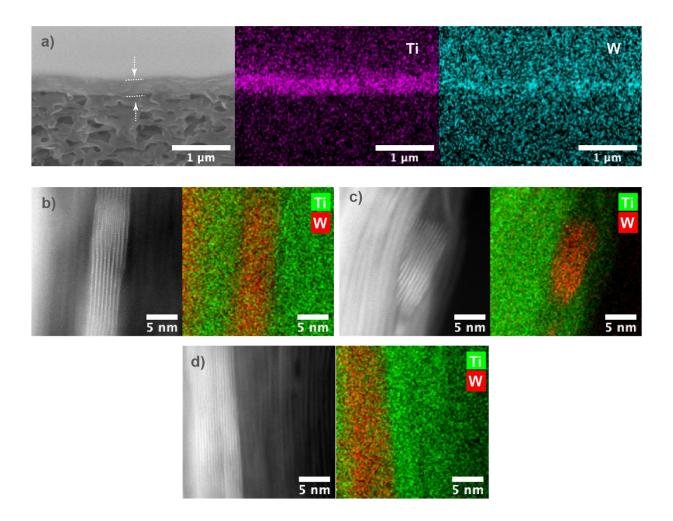
Hydrophilicity and Surface Charge Modulation of Ti₃C₂T_x MXene Based Membranes for Water Desalination

Laxmi Pandey,^a Wentao Liang^a Armin VahidMohammadi^d, Teng Zhang^d, Yury Gogotsi^d and Meni Wanunu^{* a,b,c}


^a Department of Physics, Northeastern University, Boston, MA 02115, USA

^b Department of Bioengineering, Northeastern University, Boston, MA 02115, USA

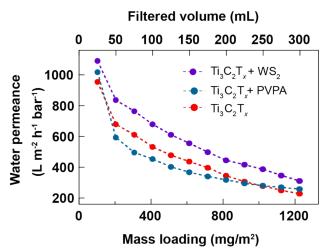
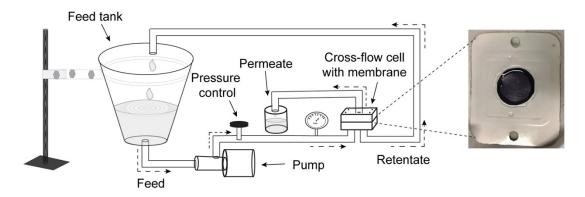
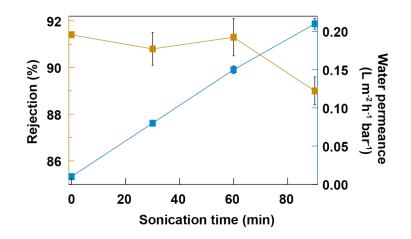

^c Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115,

USA

^d A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA

Figure S1: Nanosheets and membrane surfaces characterization: a) area of $Ti_3C_2T_x$ (before sonication) measured with ImageJ from three different AFM images; b) and c) size of $Ti_3C_2T_x$ nanosheets (after 1.5 hours of ultrasonic probe sonication with Hielscher UP100H at 60% power) measured with Zetasizer Nano ZS and WS₂ measured with Zetasizer Nano ZS respectively, two curves are shown here to compare the batch-to-batch nanosheet size differences. d) and e) SEM surface images of $Ti_3C_2T_x$ and $Ti_3C_2T_x + WS_2$ membranes, respectively. Table S1 reports the surface parameters of membranes obtained by analyzing SEM images (d and c) using ImageJ software.

Figure S2: Cross-section characterization of a $Ti_3C_2T_x + WS_2$ composite membrane: a) SEM image and false-color EDX elemental maps for Ti (purple) and W (light blue). b-d) HAADF-STEM image along with false-color EDX elemental maps for Ti (green) and W (red) of different parts of the membrane.

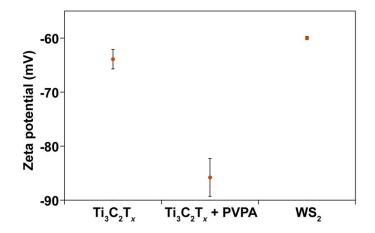
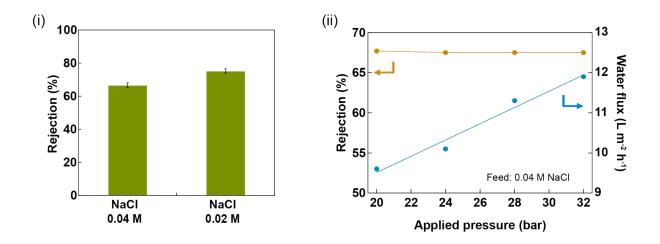
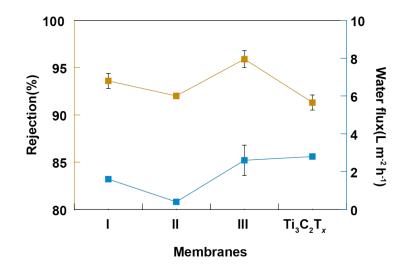
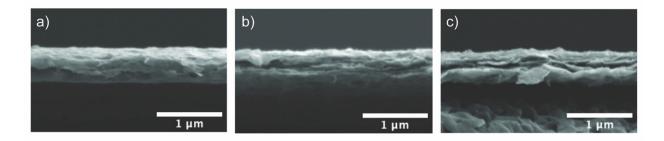
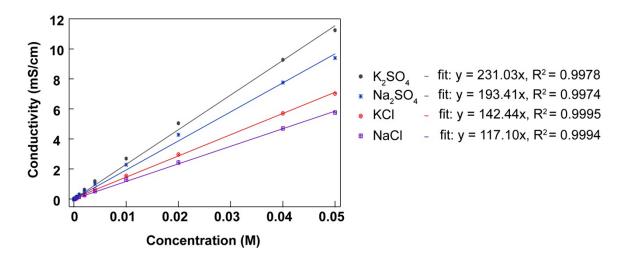

Figure S3: Comparison of water permeance of different membranes based on mass loading. 3 mL of solution containing 0.2 mg/mL of nanosheets was first diluted to 300 mL and vacuum filtered on PES substrate. To prepare MXene + WS₂ suspension, 2 mL of 0.2 mg/mL of MXene was mixed with 1 mL of 0.2 mg/mL of WS₂.

Figure S4: Schematic illustration of the cross-flow system. The membrane to be tested is fitted in the cross-flow cell, and the feed tank is filled with a salt solution pressurized by the pump. Dashed arrows show the direction of feed and permeate flow.

Figure S5: Performance of $Ti_3C_2T_x$ lamellar membrane in the cross-flow system as a function of $Ti_3C_2T_x$ nanosheet sonication time. Longer sonication times lead to a reduction in the mean nano-capillary length by reducing nanosheet size, which helps to increase water permeance. The feed solution was 0.02 M Na₂SO₄ in these experiments.

Figure S6: Comparison of zeta potential of $Ti_3C_2T_x$ (90 min sonicated nanosheets), WS₂, and $Ti_3C_2T_x + PVPA$ dispersion in an aqueous solution. The concentration of nanosheets in each dispersion was 0.1 mg/mL. $Ti_3C_2T_x + PVPA$ dispersion was prepared by heating 1% of PVPA with 0.2 mg/mL of $Ti_3C_2T_x$ at 90°C for about 20 min. For pH adjustment, HCl and NaOH were added to the dispersion dropwise.


Figure S7: (i) Concentration-dependent, (ii) Pressure-dependent performance of MXene + WS_2 membrane. The mass ratio of MXene and WS_2 was 2:1 in these membranes. For concentration dependent performance, applied pressure was 20 bar.

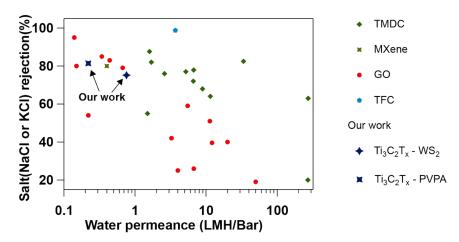

Figure S8: Comparison of $Ti_3C_2T_x + PVPA$ prepared under the different conditions with $Ti_3C_2T_x$ - only membrane. For optimization purposes, PVPA was mixed with $Ti_3C_2T_x$ dispersion and prepared the membrane in 3 cases: for type I membrane, the membrane was prepared by mixing 1% PVPA with 0.05mg/mL of $Ti_3C_2T_x$ dispersion, and the membrane was dried at room temperature; for type II membrane, the membrane was prepared by mixing 1% PVPA with 0.05mg/mL of $Ti_3C_2T_x$ dispersion and the membrane was dried at 80°C; for type III membrane, the dispersion (1% PVPA with 0.1mg/mL) was heated at 80°C to 90°C for about 20 min, and the membrane was prepared and dried at room temperature. Feed, 0.02 M Na₂SO₄, was pressurized at 20 bar in these experiments.

Figure S9: Thickness comparison of $Ti_3C_2T_x$ based membranes; Cross-section SEM image of a) $Ti_3C_2T_x$ membrane, b) $Ti_3C_2T_x + WS_2$ membrane, and c) $Ti_3C_2T_x + PVPA$ membrane, respectively. These membranes were 0.5 µm thick.

Figure S10: Concentration vs. conductivity graph for different salts. The conductivity of DI was minimal ($\sim 1 \mu$ S/cm), so line fits were forced to pass through the origin.

Figure S11: Comparison of the performance of $Ti_3C_2T_x$ - based membranes in this work with other literature reports for GO¹⁻⁶, MXene⁷, TMDC⁸⁻¹¹ and TFC¹² membranes. **References:**

- 1 Yang, Q. *et al.* Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. *Nature Materials* **16**, 1198-1202 (2017). <u>https://doi.org:10.1038/nmat5025</u>
- 2 Guan, K. *et al.* Nanochannel-confined charge repulsion of ions in a reduced graphene oxide membrane. *Journal of Materials Chemistry A* **8**, 25880-25889 (2020). https://doi.org:10.1039/D0TA08881A
- Hu, M. & Mi, B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. *Environmental Science & Technology* 47, 3715-3723 (2013). <u>https://doi.org:10.1021/es400571g</u>
- 4 Han, Y., Xu, Z. & Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. *Advanced Functional Materials* **23**, 3693-3700 (2013). <u>https://doi.org/10.1002/adfm.201202601</u>
- 5 Han, Y., Jiang, Y. & Gao, C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. *ACS Applied Materials & Interfaces* **7**, 8147-8155 (2015). <u>https://doi.org:10.1021/acsami.5b00986</u>
- 6 Morelos-Gomez, A. *et al.* Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. *Nature Nanotechnology* **12**, 1083-1088 (2017). <u>https://doi.org:10.1038/nnano.2017.160</u>
- Zhu, J. *et al.* Precisely Tunable Ion Sieving with an Al13–Ti₃C₂T_x Lamellar Membrane by Controlling Interlayer Spacing. *ACS Nano* 14, 15306-15316 (2020). <u>https://doi.org:10.1021/acsnano.0c05649</u>
- Ries, L. *et al.* Enhanced sieving from exfoliated MoS₂ membranes via covalent functionalization. *Nature Materials* 18, 1112-1117 (2019). https://doi.org:10.1038/s41563-019-0464-7
- 9 Mei, L. *et al.* Simultaneous electrochemical exfoliation and covalent functionalization of MoS₂ membrane for ion sieving. *Advanced Materials* n/a, 2201416 (2022). <u>https://doi.org:https://doi.org/10.1002/adma.202201416</u>
- 10 Sapkota, B. *et al.* High permeability sub-nanometre sieve composite MoS₂ membranes. *Nature Communications* **11**, 2747 (2020). <u>https://doi.org:10.1038/s41467-020-16577-y</u>
- 11 Hoenig, E. *et al.* Controlling the Structure of MoS₂ Membranes via Covalent Functionalization with Molecular Spacers. *Nano Letters* **20**, 7844-7851 (2020). <u>https://doi.org:10.1021/acs.nanolett.0c02114</u>
- 12Kadhom, M. & Deng, B. Synthesis of high-performance thin film composite (TFC)
membranes by controlling the preparation conditions: Technical notes. Journal of Water
Process Engineering **30**, 100542 (2019).
https://doi.org/10.1016/j.jwpe.2017.12.011