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Table S1

Surface parameters

Membranes _
Rq, pixel |Ra, pixel

Ti,.C,T, 61 37

Ti.C,T+WS,| 67 41

Figure S1: Nanosheets and membrane surfaces characterization: a) area of Ti;C,T, (before
sonication) measured with ImageJ from three different AFM images; b) and c) size of Ti;C,T,
nanosheets (after 1.5 hours of ultrasonic probe sonication with Hielscher UP100H at 60% power)
measured with Zetasizer Nano ZS and WS, measured with Zetasizer Nano ZS respectively, two
curves are shown here to compare the batch-to-batch nanosheet size differences. d) and ) SEM
surface images of Ti;C,T, and Ti;C,T, + WS, membranes, respectively. Table S1 reports the
surface parameters of membranes obtained by analyzing SEM images (d and c¢) using ImageJ
software.



Figure S2: Cross-section characterization of a Ti;C,T, + WS, composite membrane: a) SEM

image and false-color EDX elemental maps for Ti (purple) and W (light blue). b-d) HAADF-

STEM image along with false-color EDX elemental maps for Ti (green) and W (red) of different
parts of the membrane.
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Figure S3: Comparison of water permeance of different membranes based on mass loading. 3
mL of solution containing 0.2 mg/mL of nanosheets was first diluted to 300 mL and vacuum
filtered on PES substrate. To prepare MXene + WS, suspension, 2 mL of 0.2 mg/mL of MXene
was mixed with 1 mL of 0.2 mg/mL of WS,.
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Figure S4: Schematic illustration of the cross-flow system. The membrane to be tested is fitted
in the cross-flow cell, and the feed tank is filled with a salt solution pressurized by the pump.
Dashed arrows show the direction of feed and permeate flow.
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Figure S5: Performance of Ti;C,T, lamellar membrane in the cross-flow system as a function of
Ti;C, T, nanosheet sonication time. Longer sonication times lead to a reduction in the mean
nano-capillary length by reducing nanosheet size, which helps to increase water permeance. The
feed solution was 0.02 M Na,SO, in these experiments.
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Figure S6: Comparison of zeta potential of Ti;C,T, (90 min sonicated nanosheets), WS,, and
Ti13C, T, + PVPA dispersion in an aqueous solution. The concentration of nanosheets in each
dispersion was 0.1 mg/mL. Ti;C,T, + PVPA dispersion was prepared by heating 1% of PVPA
with 0.2 mg/mL of Ti;C,T, at 90°C for about 20 min. For pH adjustment, HCI and NaOH were
added to the dispersion dropwise.
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Figure S7: (i) Concentration-dependent , (ii) Pressure-dependent performance of MXene + WS,
membrane. The mass ratio of MXene and WS, was 2:1 in these membranes. For concentration
dependent performace, applied pressure was 20 bar.
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Figure S8: Comparison of Ti3;C,T, + PVPA prepared under the different conditions with Ti;C, T,
- only membrane. For optimization purposes, PVPA was mixed with Ti;C,T, dispersion and
prepared the membrane in 3 cases: for type I membrane, the membrane was prepared by mixing
1% PVPA with 0.05mg/mL of Ti;C,T, dispersion, and the membrane was dried at room
temperature; for type II membrane, the membrane was prepared by mixing 1% PVPA with
0.05mg/mL of Ti;C,T, dispersion and the membrane was dried at 80°C; for type III membrane,
the dispersion (1% PVPA with 0.1mg/mL) was heated at 80°C to 90°C for about 20 min, and the

membrane was prepared and dried at room temperature. Feed, 0.02 M Na,SO,, was pressurized at
20 bar in these experiments.



Figure S9: Thickness comparison of Ti3C,T, based membranes; Cross-section SEM image of a)
Ti;C,T, membrane, b) Ti;C,T, + WS, membrane, and ¢) Ti3C,T, + PVPA membrane,
respectively. These membranes were 0.5 pm thick.
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Figure S10: Concentration vs. conductivity graph for different salts. The conductivity of DI was
minimal (~1 nuS/cm), so line fits were forced to pass through the origin.
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Figure S11: Comparison of the performance of Ti;C, T, - based membranes in this work with other
literature reports for GO'-°, MXene’, TMDC?!'! and TFC!?2 membranes.
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