Supporting Information

Tuning the high-entropy perovskite as efficient and reliable electrocatalysts for oxygen evolution reaction

Ruixue Wei¹, Gaoliang Fu^{2*}, Huafeng Qi², Hewei Liu²,

1 Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China

2 Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China

Email: <u>fugl@hhstu.edu.cn</u> (G. F.)

Fig. S1. (a) XRD patterns for 0.7Sr and 0.9Sr. There is a small amount of inactive $CrSrO_4$ impurity in 0.7Sr. In the 0.9Sr, the impurity of $Sr_9Ni_7O_{21}$ is observed, which is active for OER. (b) Expanded XRD patterns. The peak for 0.9Sr shift toward low angle compared with 0.7Sr, which is likely to be caused by the impurity of $Sr_9Ni_7O_{21}$ existed in 0.9Sr.

Fig. S2. LSV curves for $La_{1-x}Sr_x(5B_{0.2})O_3$ (x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9). Among them, 0.7Sr delivers the best OER performance. Compared with 0.7Sr, 0.9Sr shows slightly low activity, which may be due to the presence of more $Sr_9Ni_7O_{21}$ impurities.

Fig. S3. Brunauer-Emmett-Teller (BET) measurements for $La_{1-x}Sr_x(5B_{0.2})O_3$. Nitrogen adsorption and desorption isotherms measured at 77 K of (a) $La(5B_{0.2})O_3$, (b) 0.1Sr, (c) 0.3Sr, (d) 0.5Sr and (e) 0.7Sr.

Fig. S4. Equivalent circuit. It consists of an electrolyte resistance (R_s) , a charge transfer resistance (R_{ct}) , and a constant phase element (CPE).

Fig. S5. XPS core level spectra of Ni 2p for La(5 $B_{0.2}$)O₃ and 0.7Sr. Compared to La(5 $B_{0.2}$)O₃, a positive shift of 0.6 eV is observed in Ni $2p_{1/2}$ peak for 0.7Sr, indicating the formation of more high-valence Ni³⁺.

Fig. S6. TEM image for 0.7Sr after OER tests. As seen, an amorphous layer with a thickness of \sim 5 nm is observed at the surface of catalyst, suggestive of the structural reconstruction during OER.

Sample	Cr ⁶⁺ /Cr ³⁺	Mn ⁴⁺ /Mn ³⁺	Fe ⁴⁺ /Fe ³⁺	Fe ³⁺ /Fe ²⁺	Co ⁴⁺ /Co ³⁺	C0 ³⁺ /C0 ²⁺	Ni ³⁺ /Ni ²⁺	OH _{adsorbed} /O _{Lattice}
La(5B _{0.2})O ₃	1.10	0.72	0	3.32	0	1.35	0	0.96
0.7Sr	2.62	5.09	0.37	-10.5	0.67	2.53	1.26	2.86

Table S1. XPS data for $La_{1-x}Sr_x(5B_{0,2})O_3$