Supplementary Material for

Facile synthesis of magnetic intelligent sensors for pH-sensitive

controlled capture of Cr(VI)

Peixin Hu^a, Hechao Lu^a, Qinting He^a, Fang Ren^a, Juan Wu^{a,b}*, Wei Jiang^b

a Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering,

Jiangsu University of Technology, Changzhou 213001, China

b National Special Superfine Powder Engineering Research Center, Nanjing University of Science and

Technology, Nanjing 210094, China

Fig. SI EDS spectra of Fe₃O₄/RhB@PAM nanosensors.

^{*} Corresponding author. Tel.: +86-18906110982

E-mail address: jintanwujuan@163.com

Fig. S2 FT-IR spectra of (a) Fe₃O₄-NH₂, (b) Fe₃O₄-COOH and (c) Fe₃O₄/RhB@PAM.

Fig. S3 Fluorescence intensities of the $Fe_3O_4/RhB@PAM$ sensors at different (a) pH, (b) temperature and (c) storage time. The excitation and emission wavelengths were 554 nm and 582 nm, respectively. Slit: 2.0 nm/2.0 nm.

Fig. S4 (a) Fluorescence spectra of Fe₃O₄/RhB@PAM after addition of different amounts of Cr(\mathbb{II}) in aqueous solution (pH 4), (b) the fluorescence intensities of Fe₃O₄/RhB@PAM sensors with Cr(\mathbb{II}) (0.9 ppm) and Cr(\mathbb{II})+Cr(\mathbb{VI}) (0.9 ppm) at different pH values and (c) the

fluorescence intensities of Fe₃O₄/RhB@PAM sensors with Cr(III) and Cr(III)+Cr(VI) at different concentrations (the concentrations of Cr(VI) and Cr(III) are the same). The excitation and emission wavelengths were 554 nm and 582 nm, respectively. Slit: 2.0 nm/2.0 nm.

Fig. S5 (a) Fluorescence spectra of RhB after addition of different amounts of Cr(VI) in aqueous solution (pH 4) and (b) plot of the fluorescence intensity versus various concentrations of Cr(VI). F₀ is the fluorescence intensity of RhB, F is the obtained fluorescence intensity after addition of Cr(VI). The excitation and emission wavelengths were 554 nm and 582 nm, respectively. Slit: 2.0 nm/2.0 nm.