Supplementary materials

High-efficiency Removal of As(III) from Water using Siderite as

Iron Source in the Electrocoagulation Process

Haitao Yu^a, Junfeng Li^{ab,*}, Wenying Qu^{ab}, Wenhuai Wang^{ab}, Jiankang Wang^{ab}

^a College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi,

Xinjiang, 832000, PR China;

^bKey Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production &

Construction Corps, Shihezi, 832000, Xinjiang, PR China.

Submitted to

RSC Advances

April 11, 2024

*Corresponding author

E-mail: ljfshz@126.com (J.F. Li)

Name of instrument	Model number	
Magnetic stirrer	MS-H-S	
Electric heating blast drying oven	WGL-30B	
Portable multi-parameter water quality analyzer	SL1000	
Direct current power supply	MS-155D	
Peristaltic pump	NKCP-S10B	
Electronic balance	MS204TS	
Ultrasonic cleaning device	KH-256DB	
Atomic absorption spectrophotometer	AA-6880	
Ultraviolet visible spectrophotometer	DR6000	

Table S1 Main instruments and equipment

Table	S2	Main	test	drugs
-------	----	------	------	-------

Name of drug	Specifications	Manufacturer of products		
NaAsO ₂	Super pure	Sigma-Aldrich Corporation		
CH ₄ N ₂ S	Super pure	Tianjin Yongsheng Fine Chemicals Corporation		
L-Ascorbic acid	Super pure	Tianjin Yongsheng Fine Chemicals Corporation		
HCl	Super pure	Tianjin Yongsheng Fine Chemicals Corporation		
H_2SO_4	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
NaHB	Super pure	Tianjin Yongsheng Fine Chemicals Corporation		
HNO ₃	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
Na_2SO_4	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
NaOH	Super pure	Tianjin Yongsheng Fine Chemicals Corporation		
HONH ₃ Cl	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
CH ₃ COONH ₄	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
1,10-Phenanthroline	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
$Fe(NH_4)_2 \bullet (SO_4)_2 \bullet 6H_2O$	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
NaNO ₃	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
Na ₃ PO ₄	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		
$K_2Cr_2O_7$	Analytical pure	Tianjin Yongsheng Fine Chemicals Corporation		

response surface					
Test	A- Intensity of	D -U	C-Rate of	Actual arsenic removal	
Number	current (mA)	B-pH	circulation (mL/min)	rate (%)	
1	-1	-1	0	73.43	
2	1	-1	0	78.03	
3	-1	1	0	63.55	
4	1	1	0	73.02	
5	-1	0	-1	61.27	
6	1	0	-1	75.33	
7	-1	0	1	80.88	
8	1	0	1	70.59	
9	0	-1	-1	80.34	
10	0	1	-1	58.52	
11	0	-1	1	71.71	
12	0	1	1	73.23	
13	0	0	0	98.62	
14	0	0	0	99.84	
15	0	0	0	99.85	
16	0	0	0	98.93	
17	0	0	0	96.49	

Table S3 Experimental design and results of arsenic removal efficiency optimization with

			Ciliciciti			
Source of information	Sum of squared	Degree of	Mean square	F	Р	Significance of
	deviations	freedom				significance
model	3132.47	9	348.05	71.38	< 0.0001	**
A- Intensity of current	39.78	1	39.78	8.16	0.0245	*
B-pH	154.79	1	154.79	31.75	0.0008	**
C- Rate of circulation	54.86	1	54.86	11.25	0.0122	*
AB	5.93	1	5.93	1.22	0.3066	
AC	148.23	1	148.23	30.4	0.0009	**
BC	136.19	1	136.19	27.93	0.0011	**
A^2	693.68	1	693.68	142.26	< 0.0001	**
B^2	813.87	1	813.87	166.91	< 0.0001	**
C^2	812.7	1	812.7	166.67	< 0.0001	**
Residual error	34.13	7	4.88			
Loss of fit term	26.58	3	8.86	4.69	0.0848	ns
Pure error	7.55	4	1.89			
Sum	3166.61	16				
]	R ² =0.9892	Adj R ² =0.9754	Pre R ² =0.8620		

Table S4 Regression analysis results of the actual arsenic removal rate model and regression coefficient

Note: P < 0.01 is highly significant and is represented by "**"; P < 0.05 is significant and is represented by "*"; P > 0.05 is not significant and is represented by "ns".

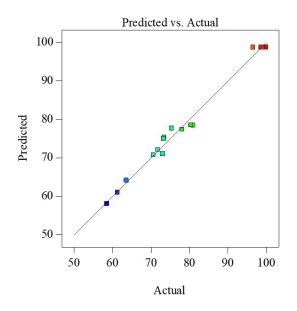


Figure S1. Fitting curve of actual and predicted value of Arsenic removal rate

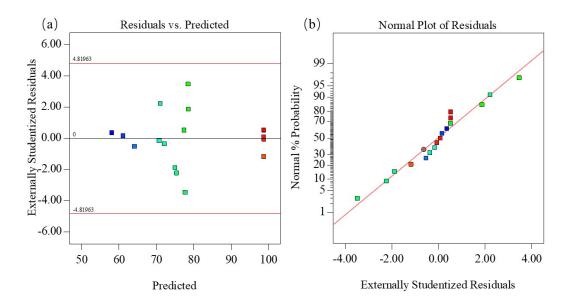


Figure S2. (a) based on the predicted As removal rate residual diagram, (b) Asrenic removal residual diagram

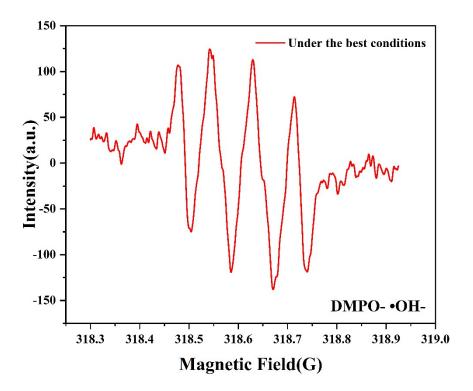


Figure S3. The ESR spectrum of the simulation system (•OH).

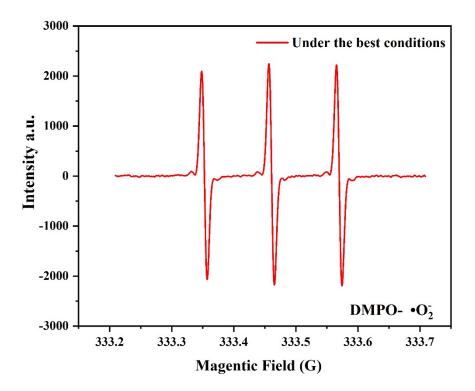


Figure S4. The ESR spectrum of the simulation system (•O-2).

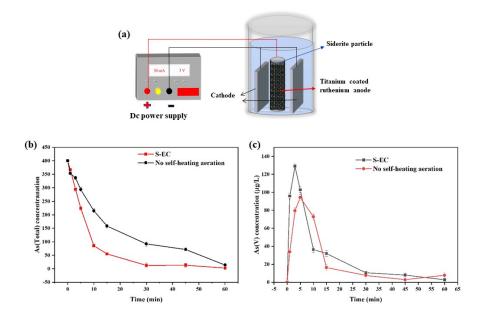


Fig. S5. (a). Schematic representation of an electrocoagulation reaction (no peristaltic pump) apparatus. Comparison of the electrocoagulation system filled with siderite anode and the electrocoagulation system with a siderite-filled anode but no-overflow conditions(no peristaltic pump): (b). Arsenic removal efficiency; (c). Change in As(V) concentration.