1	Supplementary Material									
2	Ursolic acid inhibits NF-кB signaling and attenuates MMP-9/TIMP-1 in progressive									
3	osteoarthritis: A network pharmacology-based analysis									
4										
5	Eman Maher Zahran ^{a*} , Soad A. Mohamad ^b , Mohamed M. Elsayed ^c , Mohamed Hisham ^d , Sherif									
6	A. Maher ^e , Usama Ramadan Abdelmohsen ^{a,f} , Mahmoud Elrehany ^h , Samar Yehia Desoukey ^f ,									
7	Mohamed Salah Kamel ^f									
8	^a Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities									
9	Zone, New Minia City, 61111, Egypt. https://orcid.org/0000-0002-5517-082X.									
10	^b Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya									
11	University, Universities Zone, New Minia City, 61111, Egypt.									
12	°Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, 61111, Egypt.									
13	^d Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University,									
14	Universities Zone, New Minia City, 61111, Egypt									
15	^e Department of Biochemistry, Faculty of Pharmacy, New Valley University, New Valley,									
16	72713, Egypt									
17	^f Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt									
18	^g Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521,									
19	Saudi Arabia mrabeh@kku.edu.sa, Salshhri@kku.edu.sa									
20	^h Department of Biochemistry, Faculty of Pharmacy, Deraya University, Universities Zone,									
21	New Minia City, 61111, Egypt									
22										
23	*Corresponding author: Eman Maher Zahran, emanzahran84@yahoo.com,									
24	eman.maher@deraya.edu.eg,									
25										
26										
27										
28										
29										
30										
31										
32										
33										

Metabolic profiling of n-hexane fraction of *Ocimum forskolei* and isolation of ursolic acid

LC-MS was carried out using a mass spectrometer of Synapt G2 HDMS quadrupole time-of-36 flight hybrid (Waters, Milford, CT, USA). A two ml of the sample was injected into a BEH 37 C18 column (2.1 \times 50 mm), which was optimized to 40° C, and then connected to the guard 38 column. The gradient elution was employed, where the mobile phase consisted of purified 39 water (A) and acetonitrile (B) containing 0.1% formic acid in each. The gradient program 40 started with 10% B which was increased linearly in 30 min to 100% B at a flow rate of 300 41 µL/min and remained isocratic for 5 min before linearly decreasing to 10% B in 1 min. The 42 injection volume was adjusted at to 10 µL, the tray temperature was maintained at 12° C with 43 a total analysis time of 45 min. for each sample. High resolution mass spectrometry was carried 44 out in both positive and negative ESI ionization modes with a spray voltage of 4.5 kV, a 45 capillary temperature of 320° C and a mass range acquired at m/z from 150 to 1500. The 46 MZmine 2.12 was employed for investigation of data, followed by converting the raw data into 47 positive and negative files in mzML format with ProteoWizard. The compounds were then 48 dereplicated and identified using the Dictionary of Natural Products (DNP) database ¹. 49

The n-hexane fraction (400 mg) was subjected to VLC fractionation on a silica gel column using n-50 hexane-EtOAc gradient mixtures of increasing polarities (20, 30, 40, 50 and 100%). The effluents 51 were collected in fractions which were concentrated to give four subfractions (II 1-II 4). Subfraction 52 II 4 (70 mg) was subjected to silica gel column using DCM-MeOH gradient mixtures where a white 53 powder was precipitated and purified. Then, it was dissolved in DMSO-d₆, at a concentration of 1 54 mg/500 µl of DMSO-6, and subjected to ¹H-NMR analysis via a Brüker Avance, 400 MHz, NMR 55 spectrometer, Germany), using Tetramethyl Silane (TMS) as a reference. This was followed by co-56 57 chromatography in comparison with an authentic ursolic acid sample obtained from pharmacognosy department, faculty of pharmacy, Deraya university. The run system used for TLC co-58 chromatography was DCM:Methanol 95:5 and the R_f values were measured. 59

- 66 Table S1. Dereplicated metabolites from LC-HR-MS analysis of n-hexane fraction of
- 67 Ocimum forskolei

No.	Compound	Acc. Mass	Mol.		Chemical	Dof
		g/mol	m/z,	formula	class	Ref

1	4-hexenoic acid	114.07	114.011	$C_6H_{10}O_2$	Fatty acid	2
2	Fumaric acid	116.01	116.013	C ₄ H ₄ O ₄	Fatty acid	3
3	Dihydroxybenzoic acid	154.03	153.011	С7Н5О4	Phenolic compound	4
4	Eugenol	164.08	164.082	C ₁₀ H ₁₂ O ₂	Phenolic compound	5
5	Vanillic acid	168.04	168.005	$C_8H_7O_4$	Phenolic compound	6
6	Ligustilidiol	224.10	224.104	C ₁₂ H ₁₆ O ₄	Iridoid	7
7	12-hydroxy jasmonic acid	226.12	226.113	$C_{12}H_{18}O_4$	Cyclopenta- none derivative	8
8	Sacidumol A	236.10	236.104	C ₁₃ H16O4	Phenolic compound	9
9	Nigellicine	246.10	246.109	C ₁₃ H ₁₄ N ₂ O ₃	Heterocyclic compound	10
10	2-Hydroxy-9,12,15 -octadecatrienoic acid	294.46	294.467	C ₁₈ H ₃₀ O ₃	Fatty acid	11
11	Sanguinone A	298.11	298.004	C ₁₅ H ₁₄ N ₄ O ₃	Pyrrolo- quinoline alkaloid	12
12	Synparvolide C	300.12	300.120	C ₁₄ H ₂₀ O ₇	Heterocyclic compound	13
13	Aegyptinone A	310.16	310.157	C ₂₀ H ₂₂ O ₃	Heterocyclic compound	14
14	Scillascillin	312.06	312.062	C ₁₇ H ₁₂ O ₆	Homoisoflavan one	15
15	Sahandone	324.21	324.187	$C_{21}H_{26}O_3$	Diterpene	16

16	5-O-Caffeoyl shikimic acid	336.08	336.084	$C_{16}H_{16}O_8$	Phenolic compound	17
17	5-O-p-Coumaroyl quinic acid	338.10	338.099	C ₁₆ H ₁₈ O ₈	Phenolic compound	18
18	3-(3,4- Dihydroxyphenyl)- 2-hydroxy propanoic acid	360.08	360.082	C ₁₈ H ₁₆ O ₈	Phenolic compound	19
19	Ursolic acid	456.36	456.129	C ₃₀ H ₄₈ O ₃	Triterpene	20

А

76 Table S2. A list of ¹H-NMR chemical shifts of ursolic acid

Assignment	Chemical shift	Integration, Multiplicity & J
Assignment	δ _H	(Hz)
Н-3	3.06	1H, s
H-12	5.04	1H, br s
H-18	2.10	1H, d, <i>J</i> = 11 Hz
Н-23	0.90	3H, s, CH ₃
H-24	0.85	3H, s, CH ₃
H-25	0.83	3H, s, CH ₃
H-26	0.80	3H, s, CH ₃
H-27	0.91	3H, s, CH ₃
H-29	0.79	3H, d, <i>J</i> = 6.4 Hz
H-30	0.85	3H, d, <i>J</i> = 6 Hz

78 2. Formulation of UA emulgel

79 Poloxamer, chitosan, PVA were purchased from Merck chemicals, USA. Ltd, Olive oil and lecithin from Sigma-Aldrich, USA, methanol from Sigma- Aldrich, Germany and glycerol 80 from Ranbaxy laboratories Ltd. Three different formulations: UAE1, UAE2 and UAE3 were 81 prepared by dissolving the defined amount of the drug in ethanol and lecithin then mixed with 82 5 ml of Olive oil, followed by addition of the surfactant and co-surfactant in well closed tubes 83 for 24 hrs on magnetic stirrer at 200 rpm (75° C) and finally centrifugating the suspension at 84 5000 rpm (Figure S. Clear supernatant liquid was separated and filtered, then the absorbance 85 was measured by a UV spectrophotometer (Shimadzu UV-1280, Japan) at 214 nm. The 86 resulting emulsion was then cooled at room temperature by immersion in a thermostatic bath 87 88 (10.0±0.1°C). ^{21, 22}

89

Components	UA-E1	UA-E2	UA-E3
UA	2% w/w	2% w/w	2% w/w
Poloxamer	25% w/w	-	-
PVA	-	-	25% w/w
Chitosan (in 1% v/v glacial acetic acid)	-	25% w/w	-
Olive oil	20% w/w	20% w/w	20% w/w
Lecithin	7.5% w/w	7.5% w/w	7.5% w/w
Glycerol	2.5% w/w	2.5% w/w	2.5% w/w
Water	q.s. 100%	q.s. 100%	q.s. 100%

Figure S4: A schematic presentation for preparation steps of the emulgel

	14	1
9	int	

96

A B C

97 Figure S5. UA formulations: (A) UAE1, B) UAE2 and C) UA-E3

98 Table S4. physical examination of the three formulations

Formulation	Color	Odor	Grittiness	Phase separation	Homogeneity
Emulsion	White	pungent, fruity smell	-ve	None	Homogenous
UAE1	Light green	pungent, fruity smell	-ve	Slight	Homogenous
UAE2	White	pungent, fruity smell	-ve	None	Homogenous
UAE3	Dull light green	pungent, fruity smell	-ve	Separated	Slight

99

100 **3. Characterization of the UA emulgel**

101 The drug content (D.C.) was assessed based on the following equation:

103 Where; C, Concentration, D.F, Dilution factor, V, Volume taken and C.F, Conversion factor.

104 Additionally, 1 gram of each formulation was taken in a porous aluminum foil and placed

105 separately in a 50 ml beaker containing 10 ml of 0.1 N NaOH, for measuring the swelling index

106 (S) according to the equation:

$$S\% = \frac{W_t - W_0}{W_0} \times 100$$
.....Equation 2

108 W_t = Weight of swollen emulgel after time t, W_o = Original weight of emulgel at zero time.

109 Moreover, 0.25g of each formulation was enclosed in a dry test tube and observed over a 110 temperature range of 2–50°C, where the temperature was changed gradually (5°C/h) to 111 measure gelation temperature 23 .

112 • The bioadhesion measurement

113 The bioadhesion measurement was performed using the modified Jolly balance method, to 114 rationalize the mucoadhesion characteristics of the optimized emulgel ²⁴, using the following 115 equation:

116 Bioadhesion force (N) =
$$\frac{Bioadhesive strength}{1000} \times 9.81$$
.....Equation 3

In addition, the centrifugation test used to check the stability of the emulgel was performed by centrifugation of 5 g of UAE2 at 5000 rpm for 10 min at temperature of 25°C, then visually observing any signs of creaming or phase separation ²⁵. Besides, the globule size and zpotential of all formulations were measured by zetasizer (Malvern zetasizer, 90) with the aid of a disposable sizing cuvette at 25.1°C, where 1 ml of the sample was diluted with 10 ml water and the results were recorded ²⁴.

124

125 • The permeation study

As well, the modified Franz diffusion cell was used for permeation study, as reported ²⁶. where
the mechanism of UA release from UAE2 was calculated according to the following kinetic
models ^{27, 28}:

- 129 1. Zero order $R=K_0t$
- 130 2. First order: $R = 1 e^{-k1}t$

131 3. Higuchi diffusion model: $Q = K^H \times t^{1/2}$

132 4. Baker–Lonsdale model:
$$3/2[1 - (1 - M_t/M_{\infty})^{2/3}] - M_t/M_{\infty}) = K_3 t$$

133 5. Hixson–Crowell cube root law:
$$\frac{dW}{dt} = KC(C_s - C_s)$$

134 6. Whereas R, Q or M_t/M_{∞} refers to the fraction of drug released at time t, K, K₃ or K^H is 135 the rate constant related to each model.

136 • The scanning electron microscopy

Finally, the morphology and dimensions of the inner oil phase of the UAE2 emulgel were
evaluated by Field Emission Scanning Electron Microscopy (SEM) using an electron high
tension of 5 and 15 kV as reported ²⁹.

Formulation	Viscosity	pH	Drug	Swelling	Gelation	Bioadhesion
	(Pa)		content	index %	temperature	strength (N)
			(%)		(° C)	
UA emulsion	17±15	7.2±0.2	93.2±3	-	-	-
UA-E1	250±20	6.8±0.5	86.5±5	1.3±0.1	18±0.5	2.7±0.2
UA-E2	301±33	6±0.2	90±7	2±0.23	23±1	3.8±0.1
UA-E3	240±25	7±0.4	67±2	1.7±0.15	15±2	2.1±1

140 Table S5. Characterization of the three formulations

141

142 **4.** The analgesic assessment

The animals were grouped as previously prescribed and formulations were topically applied to 143 144 the knee zone. A radiant heat source was used and the rats responses of leg withdrawal was timely recorded. The time from the start of heat application to leg withdrawal (in seconds) was 145 taken as the leg withdrawal latency, determined immediately (0), at 5, 10, 15, 30, 45 and up to 146 60 min and repeated for five times (with an interval of 5 min) where the mean of five readings 147 148 was recorded. The intensity of the heat source was fixed via a constant voltage-power supply and a maximum cut-off latency of 15 seconds was optimized to avoid skin damage, where the 149 maximum possible analgesia (MPA) was calculated ³⁰. 150

151	Test reaction time -	 start reaction time

- 152 MPA =
- 153 15 start reaction time
- 154

155 Table S6. Results of anti-inflammatory activity

Group	Knee joint diameter (mm)						
	Time 0	30 m	1 h	2 h	4 h	6 h	8 h
Control	7.22±0.09	7.31±0.07	7.38±0.05	7.8±0.15	8.18±0.12	8.78±0.16	9.3±0.06
Plain emulgel	7.85±0.05	7.96±0.09	8.04±0.12	8.33±0.06	8.47±0.06	8.77±0.15	9.31±0.11
UA- emugel	8.00±0.03	6.95±0.11	6.48±0.1	5.90±0.1	5.29±0.1	4.53±0.03	4.60±0.1
Algason	8.04±0.03	7.66±0.11	6.74±0.02	6.52±0.11	5.70±0.13	5.26±0.04	4.72±0.15

156 Each value represents the mean \pm SD (N = 6). Statistical analysis were done by One-way

157 ANOVA followed by the student's T-test (*P<0.05, **P<0.01, ***P<0.001).

158

159 Table S7. Results of analgesic activity:

G	roup	Basal	BasalLatency to reaction (s)							
		reaction time (s)	15 min	30 m	45 m	60 m				
Ι		3.5±0.5	2.25±0.4	2.25±0.4	2.25±0.4	2.25±0.4				
II		3.5±0.5	2.25±0.4	2.25±0.4	2.25±0.4	2.25±0.4				
III		3.5±0.5	5±0.2	8.75±0.25	12.5±1	13.5±1				

5. The local anaesthetic assessment

Gp	BRT	Start of	Latency to Reaction(s)							
	(s)	anasthesia (m)	At	At	At	At	At	At	At	At
			1 m	2 m	3 m	15 m	30 m	1 h	2 h	3 h
Ι	1.5±0.	-	1.5±	1.5±0.	1.5±0.	1.5±0.	1.5±0.	1.5±0.5	1.5±0.	1.5±0.5
	5		0.5	5	5	5	5		5	
II	1.5±0.	-	$1.5\pm$	1.5±0.	1.5±0.	1.5±0.	1.5±0.	1.5 ± 0.5	1.5±0.	1.5 ± 0.5
	5		0.5	5	5	5	5		5	
III	$1.5\pm0.$	1.5 ± 0.5	$3.5\pm$	5.0±0.	5.5±0.	7.8±0.	8.5±0.	13±0.7	13±0.	15.5±0.
	5		0.5	2	5	8	3		7	2
IV	1.5±0.	3.75 ± 0.5	$4.7\pm$	4.7±0.	5.5	8±1	8±1	10.5±0.	6.4±0.	4.8±0.2
	5		0.2	2				5	2	

BRT refers to Basal reaction time.

168

Figure S6. Sciatic nerve isolation and local anaethetic assessment

169 6. Network Pharmacology-Based Analysis of Ursolic Acid for Osteoarthritis

• Collection of ursolic acid related targets from herbal databases

171 he target genes were obtained through a search within the Traditional Chinese Medicine
172 Systems Pharmacology Database and Analysis Platform (TCMSP) database (<u>https://old.tcmsp-</u>
173 <u>e.com/index.php</u>) ³¹, BATMAN-TCM platform (<u>http://bionet.ncpsb.org.cn/batman-tcm/</u>) ³².
174 After that, and these target genes converted into their conical gene names using the UniProt
175 database (https://www.uniprot.org/) ³³.

176

• Screening of wound healing process related target genes

Genes associated with osteoarthritis process were collected from the GeneCards database (<u>https://www.genecards.org/</u>) ³⁴ and Comparative Toxicogenomics Database (CTD) (<u>http://ctdbase.org/</u>) ³⁵ databases using the keywords " Osteoarthritis " and the species limited to "Homo sapiens". Duplicate targets were removed, and overlapping component-related and disease-related proteins were identified based on interactivenn (<u>http://www.interactivenn.net/</u>) ³⁶ intersections as potential targets of these components in osteoarthritis process.

• Protein–Protein Interaction (PPI) Network Construction

185 A PPI network with STRING version 12.0 (<u>https://string-db.org/</u>) ³⁷ was produced using a 186 query list of target genes and exported to Cytoscape software version 3.10.0 (USA) ³⁸, a free software package for visualizing, modeling, and analyzing molecular and genetic interaction
networks (confidence score = 0.400) and the top 10 important genes were screened using the
Cytohubba plug-in.

190 7. Molecular docking investigation

191 The X-ray crystallographic structure of TNF- α was co-crystallized with 6,7-Dimethyl-3-[(methyl(2-[methyl((1-[3-(trifluoromethyl)phenyl]-1*H*-indol-3-yl)methyl) 192 amino]ethyl)-193 amino)methyl]-4H-chromen-4-one (PDB: 2AZ5, ligand ID: 307) obtained from the Protein Data Bank (https://www.rcsb.org/structure/2AZ5). The X-ray crystallographic structure of 194 195 TGF-βR1 (PDB: 1VJY) was acquired the protein data from bank (https://www.rcsb.org/structure/1VJY)³⁹ and the native ligand naphthyridine (ligand ID: 460) 196 197 was redocked into the protein.

docking of UA against NF-kB protein active site (PDB: 198 Moreover. 1SVC) (https://www.rcsb.org/structure/1SVC) was performed [3]. Furthermore, docking against 199 200 Voltage Gated Sodium Channel (VGSC) was also performed, where VGSC Nav 1.4-1 complex is one of the molecular targets for local anesthetics ⁴⁰, which has been previously identified to 201 have an active site as a cavity composed of four voltage-sensing domains (VSD-I to VSD-IV) 202 203 with six segments for each domain and with a resolution of 3.2 A^o (PDB: 6AG) ⁴¹. Regarding docking against Matrix Metalloproteinase-9 (MMP-9), the active site (PDB: 4XCT) was 204 205 obtained from the protein data bank (https://www.rcsb.org/structure/4xct)⁴².

206**Table S9: Molecular docking results and interacting residues for UA and co-crystallized** 207**ligand in TNF-α (PDB: 2AZ5), TGF-βR1 (PDB: 1VJY) and NF-κB (PDB: 1SVC) active** 208**site**

Active	Compound	Glide	Glide	Interacting	Type of
site		score	energy	Residues	Interaction
		(kcal/mol)	(kcal/mol)		
TNF-α	Ursolic acid	-2.85	-24.45	Leu120	H-bond
(PDB:	Ligand 307	- 4.68	-46.29	Tyr 119	π -cation
2AZ5)					
TGF-βR1	Ursolic acid	-3.04	-40.10	Glu 228	2 H-bond
(PDB:				Lys 342	H-bond,
1VJY)					Salt bridge

	Ligand 460	-8.50	-70.12	His 283	H-bond
				Asp 351	H-bond
				Glu 245	Salt bridge
NF-ĸB	Ursolic acid	-3.36	-37.78	Lys 147	Salt bridge
pathway				Lys 244	H-bond
(PDB:	Dexamethasone	-4.16	-42.03	Lys 52	H-bond
1SVC)				Gln 53	H-bond
				Leu 251	2 H-bond
				Glu 341	H-bond

- 210 Table S10. Molecular docking results and interacting residues for UA and the co-
- 211 crystalized ligand (ID: N73) in MMP-9 (PDB: 4XCT) active site

Active site	Compound	Glide	Glide	Interacting	Type of	
		score	energy	Residues	Interaction	
		(kcal/mol)	(kcal/mol)			
MMP-9	Ursolic	-3.00	-34.52	Gln 405	H-bond	
(PDB :	acid			Lys 1244	H-bond	
4XCT)	Ligand	- 6.30	-69.13	Leu 188	H-bond	
	N73			Ala 189	H-bond	
				His 226	π - π stacking	
				Zn 302	π -cation and	
					metal	
					coordination	
					bond	

212 Table S11. Primers sequences used in qRT-PCR

Primer	Genbank accession no.	Sequence 5' to 3'
<i>IL-1β</i>	NIM 021512 2	Forward GTG ATG AAA GAC GGC ACA CC
	NM_031312.2	Reverse TCC TGG GGA AGG CAT TAG GA
TGF-β	NM_021578.2	Forward GCT GAA CCA AGG AGA CGG AA

-			Reverse GAA GTT GGC ATG GTA GCC CT			
-	TNF-a	α NM 012675.3	Forward CCT CTC TGC CAT CAA GAG CC			
			Reverse GGC TGG GTA GAG AAC GGA TG			
-	$NF_{-\nu}$	R NM 001276711.2	Forward CAG CAG ATG GCC CAT ACC TT			
	1 41 - KI	J INN_001270711.2	Reverse CTG TCA TCC GTG CTT CCA GT			
_	COV	2 NIM 017222 4	Forward TTC GGG AGC ACA ACA GAG TG			
	<i>COA-</i> .	2 INM_017232.4	Reverse CAG CGG ATG CCA GTG ATA GA			
-	ММР	0 NM 031055.2	Forward GCA TCT GTA TGG TCG TGG CT			
	1011011 -	9 NWI_051055.2	Reverse CGT GCG GGC AAT AAG AAA GG			
_			Forward CCT AGA GAC ACG CTA GAG CAG			
	11MP-	1 NM_053819.1	Reverse ACC GGA AAC CTG TGG CAT TT			
_			Forward CTC TCT GCT CCT CCC TGT TC			
	GAPD.	H NM_017008.4	Reverse CGA CAT ACT CAG CAC CAG CA			
213						
214						
215						
216	Refere	ences				
217	1.	E. M. Zahran, U. R. Abdelmohse	n, A. Kolkeila, M. A. Salem, H. E. Khalil, S. Y. Desoukey, M. A.			
218		Fouad and M. S. Kamel, Natural	Product Research, 2021, 35 , 5972-5976.			
219	2.	N. Babu, 2018.				
220	3.	N. Chirikova, D. Olennikov and A. Rokhin, Chemistry of Natural Compounds, 2008, 44, 84-86.				
221	4.	DMC. Nguyen, DJ. Seo, KY. Kim, RD. Park, DH. Kim, YS. Han, TH. Kim and WJ.				
222		Jung, Microbial Pathogenesis, 2013, 59-60 , 52-59.				
223	5.	A. Suzuki, O. Shirota, K. Mori, S. Sekita, H. Fuchino, A. Takano and M. Kuroyanagi, Chemical				
224	-	and Pharmaceutical Bulletin, 20	09, 57 , 245-251.			
225	6.	E. M. Zahran, U. R. Abdelmohse	n, H. E. Khalil, S. Y. Desoukey, M. A. Fouad and M. S. Kamel,			
226	_	Phytochemistry Reviews, 2020,	19 , 907-953.			
227	7. N. Z. Z. Mamadalieva, D. K. K. Akramov, L. A. A. Wessjohann, H. Hussain, C. Long, K. S. S.					

Tojibaev, E. Alshammari, M. L. L. Ashour and M. Wink, *Plants (Basel)*, 2021, **10**, 132.

229	8.	A. Karioti, T. Milošević-Ifantis, N. Pachopos, N. Niryiannaki, D. Hadjipavlou-Litina and H.
230		Skaltsa, Journal of enzyme inhibition and medicinal chemistry, 2015, 30 , 38-43.
231	9.	Y. A. N. Ym. C. Yx. Li Xiao-zhen, NATURAL PRODUCT RESEARCH AND DEVELOPMENT, 2017,
232		29 , 183-189.
233	10.	A. Hadipanah, M. Gheisari and A. Armin, <i>Scientia Agriculturae</i> , 2013, 4 , 55-57.
234	11.	H. KUHN, R. WIESNER, L. ALDER and T. SCHEWE, European journal of biochemistry, 1989,
235		186 , 155-162.
236	12.	C. Garcia, C. Teodósio, C. Oliveira, C. Oliveira, A. Díaz-Lanza, C. Reis, N. Duarte and P. Rijo,
237		Current pharmaceutical design, 2018, 24 , 4207-4236.
238	13.	R. Pereda-Miranda, L. Hernández, M. J. Villavicencio, M. Novelo, P. Ibarra, H. Chai and J. M.
239		Pezzuto, Journal of Natural Products, 1993, 56 , 583-593.
240	14.	A. El-Lakany, Natural Product Sciences, 2003, 9, 220-222.
241	15.	B. Abegaz and H. Kinfe, Natural Product Communications, 2019, 14, 1934578X1984581.
242	16.	S. N. Ebrahimi, S. Zimmermann, J. Zaugg, M. Smiesko, R. Brun and M. Hamburger, <i>Planta</i>
243		<i>medica</i> , 2013, 29 , 150-156.
244	17.	M. Villalva, S. Santoyo, L. Salas-Pérez, M. d. l. N. Siles-Sánchez, M. Rodríguez García-Risco, T.
245		Fornari, G. Reglero and L. Jaime, <i>Foods</i> , 2021, 10 , 2067.
246	18.	Y. Yin, K. Zhang, L. Wei, D. Chen, Q. Chen, M. Jiao, X. Li, J. Huang, Z. Gong and N. Kang,
247		Frontiers in pharmacology, 2021, 12 .
248	19.	Y. Tang, M. Wang, X. Le, J. Meng, L. Huang, P. Yu, J. Chen and P. Wu, Antioxidant and
249		cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid
250		from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats, 2011.
251	20.	M. Silva, I. Vieira, F. Mendes, I. Albuquerque, R. Santos, F. Silva and S. Morais, <i>Molecules</i>
252		(Basel, Switzerland), 2008, 13 , 2482-2487.
253	21.	P. Nahak, G. Karmakar, P. Chettri, B. Roy, P. Guha, S. E. Besra, A. Soren, A. G. Bykov, A. V.
254		Akentiev and B. A. J. L. Noskov, 2016, 32 , 9816-9825.
255	22.	M. Gallarate, E. Mittone, M. E. Carlotti, M. Trotta, P. J. J. o. d. s. Piccerelle and technology,
256		2009, 30 , 823-833.
257	23.	S. A. Fouad, E. B. Basalious, M. A. El-Nabarawi and S. A. Tayel, <i>International journal of</i>
258		pharmaceutics, 2013, 453 , 569-578.
259	24.	S. A. Mohamad, E. M. Zahran, M. R. Abdel Fadeel, A. Albohy and M. A. Safwat, <i>Int J</i>
260		Nanomedicine, 2021, 16 , 1789-1804.
261	25.	N. K. Thakur, P. Bharti, S. Mahant and R. Rao, <i>Scientia Pharmaceutica</i> , 2012, 80 , 1045-1060.
262	26.	S. A. Mohamad, H. Salem, H. A. Yassin and H. F. Mansour, <i>Drug Design, Development and</i>
263		Therapy, 2020, 14 , 4277.
264	27.	M. Yu, Yuan, W., Li, D., Schwendeman, A., & Schwendeman, S. P. (2019). Predicting drug
265		release kinetics from nanocarriers inside dialysis bags. Journal of Controlled Release, 315,
266		
267	28.	M. P. Paarakh, Jose, P. A., Setty, C. M., & Christoper, G. P. (2018). Release kinetics–concepts
268		and applications. Int J Pharm Res Technol, 8(1), 12-20.
269	29.	E. M. Zahran, U. R. Abdelmohsen, A. I. Ayoub, M. A. Salem, H. E. Khalil, S. Y. Desoukey, M. A.
270		Fouad and M. S. Kamel, South African Journal of Botany, 2020, 131 , 311-319.
271	30.	J. R. Deuis, L. S. Dvorakova and I. Vetter, <i>Frontiers in Molecular Neuroscience</i> , 2017, 10 .
272	31.	J. Ru, P. Li, J. Wang, W. Zhou, B. Li, C. Huang, P. Li, Z. Guo, W. Tao, Y. Yang, X. Xu, Y. Li, Y.
273	~~	Wang and L. Yang, <i>J Cheminform</i> , 2014, 6 , 13.
274	32.	Z. LIU, F. GUO, Y. Wang, C. LI, X. Znang, H. LI, L. DIAO, J. GU, W. Wang, D. LI and F. He, Sci Rep,
275	22	2016, b , 21146.
276	33. 24	C. UNIPROT, INUCIEIC ACIAS KES, 2021, 49 , 0480-0489.
2/1	34.	S. FISTILIEVICH, K. INUGEL, N. KAPPAPORT, K. HAGAR, I. Plaschkes, T. Iny Stein, N. Rosen, A. Kohn,
278		IVI. I WIK, IVI. Satran, D. Lancet and D. Conen, Database (Oxford), 2017, 2017 .

- A. P. Davis, T. C. Wiegers, J. Wiegers, B. Wyatt, R. J. Johnson, D. Sciaky, F. Barkalow, M.
 Strong, A. Planchart and C. J. Mattingly, *Toxicol Sci*, 2023, DOI: 10.1093/toxsci/kfad069.
- 281 36. H. Heberle, G. V. Meirelles, F. R. da Silva, G. P. Telles and R. Minghim, *BMC Bioinformatics*,
 282 2015, 16, 169.
- 283 37. D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang,
 284 N. T. Doncheva, S. Pyysalo, P. Bork, L. J. Jensen and C. von Mering, *Nucleic Acids Res*, 2023,
 285 51, D638-D646.
- 286 38. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski
 287 and T. Ideker, *Genome Res*, 2003, 13, 2498-2504.
- 288 39. F. Gellibert, J. Woolven, M. H. Fouchet, N. Mathews, H. Goodland, V. Lovegrove, A. Laroze, V.
 289 L. Nguyen, S. Sautet, R. Wang, C. Janson, W. Smith, G. Krysa, V. Boullay, A. C. De Gouville, S.
 290 Huet and D. Hartley, *J Med Chem*, 2004, **47**, 4494-4506.
- 201 40. E. M. Zahran, U. R. Abdelmohsen, M. M. Shalash, M. A. Salem, H. E. Khalil, S. Y. Desoukey, M.
- A. Fouad, M. Krischke, M. Mueller and M. S. Kamel, *Natural product research*, 2020, 1-7.
- 293 41. X. Pan, Z. Li, Q. Zhou, H. Shen, K. Wu, X. Huang, J. Chen, J. Zhang, X. Zhu and J. J. S. Lei, 2018,
 362.
- 295 42. E. Nuti, A. R. Cantelmo, C. Gallo, A. Bruno, B. Bassani, C. Camodeca, T. Tuccinardi, L. Vera, E.
 296 Orlandini and S. J. J. o. m. c. Nencetti, 2015, 58, 7224-7240.