Supplementary Materials

A Sulfonate Ligand-Defected Zr-Based Metal-Organic Framework for The Enhanced Selective Removal of Anionic Dyes

Ha V. Le, ^{*a,b*} Nhi T. Vo, ^{*a,b*} Hoan T. Hoan, ^{*a,b*} Thu M. Dao, ^{*a,b*} Bao G. Nguyen, ^{*a,b*} Tung T. Nguyen, ^{*a,b*} Phuoc H. Ho, ^{*c*} Khoa D. Nguyen ^{*a,b*}*

^a Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 70000 Vietnam.

^b Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, 70000 Vietnam.

^c Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Corresponding Authors

* E-mail: khoand1989@hcmut.edu.vn (Khoa D. Nguyen)

Commercial name	Chemical structure	Absorption (λ _{max} _nm)	
Quinoline Yellow (QY)	$\bigcup_{O}^{O} \longrightarrow_{HN} \bigcup_{(SO_3Na)_2}^{O}$	440	
Sunset Yellow (SY)	NaO-S O O N=N O N=N O N=N O S=ONa O	482	
Rhodamine B (RhB)	N HOOC	555	
Malachite Green (MG)	$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ CI	620	

Table S1. Basic information on employed organic dyes

Figure S1. FT-IR spectra of pristine MOF-808, H₃BTC linker, H₂BTC-SO₃Na linker, and MOF-808-S.

Figure S2. ¹H-NMR spectra of digested MOF-808.

Figure S3. TGA profiles of MOF-808 and MOF-808-S.

Figure S4. Pseudo-first-order and second-order models of the adsorption processes of quinoline yellow (a, b); and sunset yellow (c, d) on MOF-808-S.

Figure S5. Pseudo-first-order and second-order models of the adsorption processes of rhodamine B (a, b), and malachite green (c, d) on MOF-808-S.

Figure S6. Langmuir and Freundlich models of the adsorption processes of quinoline yellow (a, b); and sunset yellow (c, d) on MOF-808-S.

Figure S7. Langmuir and Freundlich models of the adsorption processes of rhodamine B (a, b), and malachite green (c, d) on MOF-808-S.

N.	Sample	Pseudo-first-order model			Pseudo-second-order model		
		Q _{e,cal} (mg/g)	k*10 ⁻² (min ⁻¹)	R ² (%)	Q _{e,cal} (mg/g)	k*10 ⁻² (g/mg.min)	R ² (%)
1	QY	187.5	-1.520	88.20	746.5	0.023	99.96
2	SY	55.3	-0.966	77.84	661.4	0.108	99.98
3	RhB	27.3	-0.970	56.63	183.2	0.210	99.97
4	MG	156.3	-1.530	80.88	298.1	0.010	99.18

Table S2. Coefficients of pseudo first-order and second-order model for the adsorptionprocess based on MOF-808-S.

Table S3. Coefficients of Langmuir and Freundlich models for adsorption processes basedon MOF-808-S.

N	Sample	Langmuir model			Freundlich model		
14.		K _L (L/mg)	$Q_L(mg/g)$	R ² (%)	Ν	$K_F(L/g)$	R ² (%)
1	QY	0.297	770.1	96.18	11.2	458.0	65.22
2	SY	0.021	784.6	97.63	2.91	99.7	94.66
3	RhB	0.005	301.2	88.66	5.17	63.1	75.42
4	MG	0.004	383.1	93.01	2.84	27.8	83.05

Figure S8. FT-IR spectra of the fresh and recovered materials.

Figure S9. Pore size distribution of the fresh and reused MOF-808-S.

Figure S10. UV-Vis spectra of quinoline yellow-rhodamine B mixtures in the presence of 200 ppm for each dye at various time intervals employing MOF-808 and MOF-808-S as adsorbents