Jum EVT = 1500 kV WD = 113 mm Signal A = InLana Signal B =

of C 1s for before and after depth profile.

Figure S3. High-magnification cross-sectional (high angle ADF-STEM) images of the CO₂annealed AZ91D sample (Li-2.5-2.5) along with corresponding energy-dispersive X-ray spectroscopy elemental mapping showing the distribution of Mg, O, Al, C, Cl and Zn in the formed layer (10 μ m)

Figure S4. (a) SEM-EDS of CO₂-annealed AZ91D (i.e., Li-2.5-2.5) without washing (b) corresponding XRD measurements of as prepared vs. washed samples.

Figure S5. Corrosion mitigation effects of CO₂-treated layer on the Mg specimen: photoimages of the untreated 600 grit-finished AZ91D (a) and CO₂-treated AZ91D (b) specimens (exposed surface area: 0.833 cm²) after 21 and 22 day immersion in 3.5 wt.% NaCl solution. (c) Hydrogen collection test of the CO₂-treated samples compared with an untreated sample.

Table S1. Summary of impedance data fitting for untreated AZ91D with short- and long-term immersion.

Sample	Short-term immersion (4 individual samples)			l samples)	Untreated AZ91D long-term measurement		
ID	ul	u2	u3	u4	(1 sample with 3 measurements)		

Im	mersion time	1 h	1 h	1 h	1 h	1 h	6 h	23 h
Corrosion potential / mV _{SCE}		-1552	-1550	-1548	-1555	-1570	-1572	-1564
R_1 / ohm		10	7.8	13.4	6.2	14	14	16
R_2 /	ohm·cm ²	2665	1576	2697	3400	2644	1991	1434
CPE ₀	Capacitance / F·cm ⁻²	1.06E-5	8.81E-6	1.07E-5	6.7E-6	1.07E-5	1.3E-5	1.76E-5
	п	0.94	0.95	0.93	0.94	0.93	0.91	0.9
Chi-squared		1.6E-3	1.9E-3	1.6E-3	1.2E-3	8.7E-4	1.2E-3	1.3E-3

Table S2. Summary of impedance data fitting for Li2.5-2.5 with Ar treated AZ91D with long-term immersion to 21 h.

Sample ID		Li 2.5-2.5 w/ Ar AZ91D long-term measurement (1 sample with 3 measurements)					
Imn	nersion time	1 h	3 h	21 h			
Corrosion potential / mV _{SCE}		-1617	-1589	-1574			
R_1 / ohm		8.6	9.2	16.8			
R_2 / ohm·cm ²		8656	10719	9204			
CPE ₀	Capacitance / F·cm ⁻²	1.31E-4	1.15E-4	4.02E-5			
	п	0.91	0.94	0.91			
Chi-squared		1.3E-3	1.6E-3	1.9E-3			

Table S3. Summary of impedance data fitting for Li2.5-2.5 treated AZ91D with short- and long-term immersion.

Sample ID		Short-term immersion (2 individual samples) t1 t2		Li 2.5-2.5 AZ91D long-term measurement (1 sample with 4 measurements)			
Immersion time		1 h	1 h	1 h	3 h	21 h	26 h
OCP / mV _{SCE}		-1497	-1559	-1530	-1515	-1498	-1514
R_1 / ohm		67	24	40	41	65	66
$R_2 \& R_{\rm f}$ / ohm		37552 & -	41142 & 3069	58384 & 1250	48757	54754	27649
R_2 / ohm·cm ²		31281	-	-	40615	45610	23032
$R_{\rm f} + R_2$ / ohm·cm ²		-	36828	49675	-	-	-
CPE ₀	Capacitance / F·cm ⁻²	6E-5	5.37E-6	3.78E-5	5.87E-5	6.57E-5	6.15E-5
	п	0.92	0.88	0.79	0.83	0.91	0.92
CPE _f	Capacitance / F·cm ⁻²	-	2.99E-5	1.36E-5	-	-	-
	n	-	0.8	0.9	-	-	_
Chi-squared		5.2E-4	4.6E-4	4.3E-4	1.9E-3	1.8E-3	1.8E-3