Repurposed Organoselenium Tethered Amidic Acids as Apoptosis Inducers in Melanoma Cancer *via* P53, BAX, Caspases-3, 6, 8, 9, BCL-2, MMP2, and MMP9 Modulations

Saad Shaaban^{1,2,*}, Hanan A. Althikrallah¹, Amr Negm¹, Ayman Abo Elmaaty³, Ahmed A. Al-Karmalawy^{4,5*}

¹Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

² Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.

³ Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt.

⁴ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University–Egypt, New Damietta 34518, Egypt.

⁵ Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.

Corresponding authors:

Ahmed A. Al-Karmalawy: <u>akarmalawy@horus.edu.eg</u>, <u>ORCID</u>: <u>https://orcid.org/0000-0002-8173-6073</u> Saad Shaaban: <u>sibrahim@kfu.edu.sa</u>, <u>ORCID</u>: <u>https://orcid.org/0000-0002-7835-6926</u>

Figure S1. ¹H NMR chart of compound **2**.

Figure S2.¹³C NMR chart of compound **2**.

Figure S3. IR chart of compound 2.

Figure S4. Mass chart of compound 2.

		Abs. In	Rei Int.			Abs. In	Rel Int.			Abs. In Vol	Rel. Int.	
10	62.95	1515	7.02	33	97.10	945	4.34		130.10	1733	7.98	
- 11	70.10	633	2.93	34	96.15	599	4.77	31	131.19	433	2.00	
12	71.05	1363	6.32	33	99.10	1268	5.87	38	133.13	1110	3.34	
13	72.05	440	2.04	36	100.15	340	3.89	39	33.20	0.00	4.31	
14	73.00	2258	10.46	37	101.10	3303	25.49	60	143.10	110	0.97	
15	74.00	30.2	1.40	34	102.15	6.99	3.34	61	144.10	210	3.38	
16	75.05	583	2.70	39	103.10	3649	16.90	62	145.20		1.04	
17	77.00	353	1.24	40	104.10	322	1.49	63	133.20	2.54	1.10	
18	79.00	223	1.03	41	109.10	401	1.86	64	133.20	281	3.07	
19	\$0.10	334	1.50	42	110.10	220	1.02	63	139.13	00.2	3.07	
	\$1.10	-	440	ä	111.10	969	4.49	66	169.20	334	1.55	
	\$2.15	iii e	1.44	ŭ	112.15	807	3.74	67	171.20	204	0.45	
	\$1.10	1678	7 4	44	113.10	8084	37.45	68	73.20	202	0.94	
	84.10	481	2.23		114 10	1199	3.35	69	175.20	346	1.60	
	85.05	1107	1.17		115.10	2001	9.27	70	189.20	1038	4.81	
- 2	86.05	807	3.36	15	116.25	936	4 14	71	201.15	502	2.33	
	82.05				117.15	6264	29 02	72	147.20	375	2.08	
	a . 03	3134	20.05	-	116.15	NO7	2.81	73	259.35	515	2.39	
	\$3.00	310	1.45		110.10	371	1.26	74	260.40	207	0.96	
	89.00	360	1.39	22	134.15	ine	1.44	75	305.40	401	1.86	
	91.10		1.51		122.10	1102		76	306.40	281	1.30	
30	94.10	202	0.94		127.10	100	5 71					
31	95.10	3407			128,15	384	1.41					
32	96.10	275	1.29	35	129.10	740						

Figure S5. Mass chart of compound 2.

Figure S6. ¹H NMR chart of compound **3**.

Figure S7. ¹³C NMR chart of compound **3**.

Figure S8. IR chart of compound **3**.

Figure S9. Mass chart of compound 3.

* *													
		m/z	Abs. In	Rel. Int.		-	Abo fo	Red Int	7	m/z	Abs. In	Rel. Int.	
	10	64.05	1311	12.13	37	113.00	A06. IR	2.95	, A	198.00	3602	33.32	
	11	65.05	960	8.88	38	113.00	308	2.65		199.00	591	5.47	
	12	66.00	278	2.57	10	114.00	676	2.05	66	200.05	690	6.38	
	13	67.00	247	2.28	40	116.05	184	3.65	67	226.05	505	4.67	
	14	71.00	202	1.87	41	117.00	1110	3.30	61	227.05	655	6.06	
	15	74.00	313	2.90		118.05	500	12.20	60	228.00	1222	11.30	
	16	75.00	255	2.36		110.00	1022	0.45	70	229 15	316	2.92	
	17	76.00	214	1.98	44	120.10	310	2.43	71	210.05	2640	24.42	
	18	77.05	571	5.28		115 10	289	2.67		231.05	347	3.21	
	19	78.05	1366	12.64	44	110.00	487	4.46	- 22	212.05	594	5.49	
	20	79.10	466	4.31	47	140.00	614	5.68	24	320.00	290	2.68	
	21	80.10	388	3.59	48	141.01	1196	11.05	24	371.00	272	2.05	
	22	82.10	233	2.16	49	142.05	619	\$ 73	76	322.00	228	2.11	
	23	83.10	260	2.40	50	143.00	1894	17.52	11	334.00	398	3.68	
	24	84.10	220	2.03	51	144.00	810	7 86	78	339.00	318	2.94	
	25	85.10	278	2.57	52	144 05	400	1 78	79	149.00	230	2.13	
	26	88.05	377	3.49	53	166.05	401	4 46	80	376.00	215	1.99	
	27	89.05	1081	10.00	54	167.05	610	4.01		453.00	263	2.43	
	28	90.05	2287	21.15		168.05	1148	10.62		454 20	604	5.59	
	29	91.05	10811	100.00	56	169.15	698	6 36	83	455 20	425	3.93	
	30	92.05	1150	10.64	57	170.05	2031	18 79	24	456 25	1479	13.68	
	31	92.95	1429	13.22	58	171.10	802	7.47	85	457.20	1015	9.39	
	32	94.00	254	2.35	59	172.10	420	1.88	86	458.20	2169	20.06	
	33	95.00	354	3.27	60	94.05	863	7.98	87	459.15	562	5.20	
	34	104.00	249	2.30	61	195.05	858	7.94	85	460.15	2244	20.76	
	35	106.10	398	3.68	62	196.00	1991	18 43	29	461.15	421	4.82	
	36	107.00	444	4.11	63	107.05	\$75	\$ 12		463.10	618	\$ 72	

Figure S10. Mass chart of compound 3.

Figure S11. ¹H NMR chart of compound 4.

Figure S12. ¹³C NMR chart of compound **4**.

Figure S13. IR chart of compound 4.

Figure S14. Mass chart of compound 4.

	m/z	Abs. In	Rel. Int.		m/z	Abs. In	Rel. Int.		m/z	Abs. In	Rel. Int.	
	59.00	6150	1.57	76	126.05	2179	0.56	142	195.00	47017	12.02	
	60.05	1575	0.40	77	127.05	3204	0.82	143	196.00	122146	31.23	
	67.05	30733	3.69	78	128.00	4023	1.03	144	197.05	22307	5.70	
1	6104	101814	10.16	79	129.05	5617	1.44	145	198.00	241660	61.78	
i	64.05	57318	14.55	80	130.00	7762	1.98	146	198.95	23629	0.33	
16	65.05	43819	11.20		131.15	44/5	1.14	147	200.00	43/19	1.07	
17	66.10	9835	2.52	81	132.10	33902	5.07	148	200.95	4204	0.14	
11	67.05	4572	1.17	84	134.15	\$746	2.24	149	201.95	333	0.14	
19	68.05	2933	0.75		135.10	31116	7.04	150	207.00	3436	0.57	
20	69.10	1041	0.27	\$6	136.15	5476	1.40	152	209.05	20084	\$ 13	
21	70.05	837	0.21	87	137.00	2783	0.71	153	210.05	23473	6.00	
22	71.05	1646	0.42	88	138.05	3352	0.86	154	211.00	50268	12.85	
23	72.05	1669	0.43	89	139.00	15473	3.96	155	212.05	22070	5.64	
24	72.95	2952	0.75	90	140.00	17660	4.51	156	213.00	91327	23.35	
25	74.05	12141	3.10	91	141.00	39022	9.98	157	214.00	31220	7.98	
20	75.10	10198	2.61	92	142.05	21311	5.45	158	215.00	18164	4.64	
- 27	76.10	12385	3.17	93	143.00	58711	15.01	159	216.00	12508	3.20	
28	77.10	36493	9.33	94	144.00	25175	6.44	160	216.95	1191	0.30	
10	79.10	4/310	12.09	95	145.00	13801	3.53	161	218.00	1618	0.41	
31	\$0.00	14313	0.25	96	146.00	5042	1.29	162	224.00	2599	0.66	
12	81.00	4704	3.91	97	147.00	1039	0.27	163	225.05	1510	0.39	
11	87.55	1871	0.49	98	148.10	804	0.21	164	226.05	26426	6.76	
34	81 45	6981	1.78	100	149.15	1515	0.39	165	227.05	28172	7.20	
35	84 45	13095	1.10	100	150.10	13134	3.36	166	228.05	72774	18.60	
36	85.50	19868	5.08	107	151.10	4439	1.13	167	229.05	6399	4.19	
37	86.10	5970	1 53	102	151.95	1797	0.46	168	230.05	148867	38.06	
38	87.05	4792	1.23	104	155.00	3101	0.81	169	231.00	25292	6.47	
39	88.10	12948	111	105	154 00	\$177	0.90	170	232.05	29923	7.65	
40	89.10	37161	9.50	106	156.00	4514	1.14	171	233.00	4730	1.21	
41	90.15	101589	25.97	107	157.04	6403	1.15	172	233.95	605	0.15	
42	91.10	358905	91.76	108	158.00	3075	1.00	173	238.15	734	0.19	
43	92.05	75198	19.22	109	159.00	5675	1.02	174	239.10	0298	1.61	
44	93.00	97377	24.89	110	160.00	1470	0.18	175	240.15	/88/	2.02	
45	94.00	22561	5.77	iii	161.00	1084	0.38	177	241.10	72847	18.62	
46	95.00	26670	6.82	112	162.00	380	0 10	178	242.10	80234	20.51	
47	96.00	4114	1.05	113	163.15	1307	0.13	170	243.10	18/193	47.86	
48	97.05	4225	.08	114	164.10	28951	7.40	180	244.12	201144	15.36	
49	98.35	2449	0.63	115	165.05	9689	2.48	181	245.10	391124	100.00	
50	99.30	3386	0.87	116	166.00	30183	7 72	187	240.03	31,906	13.12	
51	100.25	1374	0.35	117	167.05	33926	8.67	183	247.03	14480	19.04	
52	101.05	1757	0.45	118	168.00	75583	19 32	184	240.05	8720	2.28	
53	102.10	5450	1.39	119	169.05	30276	7.74	185	2497.03	933	0.24	
54	103.15	15671	4.01	120	170.00	137220	35.08	186	255.10	1460	0.37	
55	104.15	62814	16.06	121	171.00	40180	10.27	187	255 10	16330	0.26	
56	105.25	45718	11.69	122	172.00	30348	7.76	188	256.14	15329	3.92	
57	106.20	94842	24.25	123	173.00	7290	1.86	189	257.10	40434	4.1Z	
58	107.15	45188	11.55	124	174.00	1239	0.32	190	258 14	0540	10.36	
59	108.15	10687	2.73	125	177.20	238	0.06	191	250.10	9349	2.44	
60	109.05	2089	0.53	126	178.15	3162	0.81	192	260.04	84319	21.56	
61	110.05	710	0.16	127	179.05	1817	0.46	193	260.03	12047	3.08	
62	111.05	1314	0.34	128	180.00	3514	0.90	194	261.10	15478	3.96	
63	112.05	1199	0.31	129	181.05	9794	2.50	195	262.05	2350	0.60	
64	113.00	7610	1.95	130	182.00	19970	5.11	196	263.03	333	0.09	
65	114.00	10354	2.65	131	183.00	25158	6.43	107	204.10	220	0.06	
66	115.00	21430	5.48	132	84.00	31201	7.98	104	209.13	730	0.19	
67	116.05	12818	3.28	133	85.00	38050	9.73	100	270.13	629	0.16	
68	117.05	50031	12.79	134	86.00	40924	10.46	200	271.15	1493	0.38	
69	118.05	27671	7.07	135	187.00	1002	2.56	200	272.25	533	0.14	
70	119.10	26692	6.82	136	188.00	6714	1.72	201	273.15	2823	0.72	
71	120.10	18391	4.70	137	189.00	868	0.22	202	274.20	358	0.14	
72	121.55	12099	3.09	138	191.05	296	0.04	203	275.20	654	0.17	
72	122.60	19750	5.05	139	192.00	4826	1.21	204	276.20	290	0.07	
74	121.55	4338	1.11	140	193.05	2875	0.74	203	277.10	369	0.09	
74	125.05	1061	0.27	141	194.00	49812	12 72					
							14.13					

Figure S15. Mass chart of compound 4.

Figure S16. ¹H NMR chart of compound 5.

Figure S17. ¹³C NMR chart of compound 5.

Figure S18. IR chart of compound 5.

Figure S19. Mass chart of compound 5.

	anda	Abs. In	Rel lat			Abe les	Rai let		100/Z	Abs. In	Rel. Int.	
10	60.05	391	0.02	20	129.05	A08.18	0.46	148	201.95	1028	0.05	
ii.	61.05	1772	0.19		120.05	11096	0.44	149	204.25	5464	0.27	
12	62.05	17107	0.84		131 10	5054	0.25	150	205.15	701	0.03	
ii ii	63.00	16926	2.84		137.04	10047	0.14	151	206.20	1020	0.05	
ii ii	64.05	36812	1.87		132.05	3684	0.18	152	207.25	2877	0.14	
	65.00	176463	9 71		133.10	2084	0.46	193	205 20	14284	0.71	
16	65.00	17878	0.64		134.15	9204	1.40	144	209.15	17645	0.87	
10	67.00	1580	0.04		135.05	30121	0.30	145	210.05	5896	0.29	
	68.05	493	0.08	80	130.05	4109	0.26	156	211.15	1298	0.09	
10	40.00	004	0.02	0/	137.05	3343	0.20	157	212.05	1471	0.27	
10	30.10	785	0.05	80	138.05	78/9	0.39	159	213.10	2154	0.11	
20	70.10	149/	0.07	89	139.00	33607	1.70	150	214.05	4336	0.21	
41	71.10	1003	0.08	90	140.05	41787	2.00	140	215.15	994	0.05	
44	72.03	3/9	0.02	91	141.00	77244	3.81	160	216.10	6855	0.34	
25	73.05	2080	0.10	92	142.05	4710	2.33	161	210.10	105	0.02	
4	74.03	4921	0.24	93	142.95	126529	0.25	104	217.00	921	0.05	
25	75.05	5212	0.26	94	143.95	48735	2.41	103	210.10	846	0.04	
20	76.05	0114	0.30	95	44.95	28945	1.43	104	221.20	1505	0.05	
17	77.05	10886	0.54	90	146.05	23129	1.14	102	223.13	14468	0.71	
28	78.05	20811	1.03	97	146.95	4067	0.20	100	224,10	19403	0.96	
29	79.05	8101	0.40	98	148.15	1843	0.09	167	223.13	53471	7 18	
30	80.00	5090	0.25	99	149.15	8397	0.42	108	220.10	64163	8 20	
31	\$1.05	1605	0.08	100	150,15	20578	1.02	169	227.13	166103	18.22	
32	82.15	1045	0.05	101	151.05	33271	1.64	170	228.10	308734	4.05	
33	\$3.10	2590	0.13	102	152.05	32505	1.61	171	229.15	120571	24.95	
34	84.15	2599	0.13	103	153.05	20872	1.03	172	230.10	106377	34.00	
35	85.15	4470	0.22	104	154.05	7855	0.39	173	231.05	94541	4.07	
36	\$6.05	4174	0.21	105	155.00	4855	0.24	174	232.10	1328/0	0.30	
37	\$7.15	6312	0.31	106	155.95	3585	0.18	175	233.05	13116	0.75	
38	\$8.15	20787	1.03	107	157.00	3398	0.17	176	234.05	960	0.05	
39	89.15	110480	5.46	108	157.95	2693	0.13	177	238.15	969	0.05	
40	90.15	391518	19.33	109	159.05	2274	0.11	178	239.25	4131	0.20	
41	91.05	202518	100.00	110	160.05	4165	0.21	179	240.25	35113	1.73	
42	92.05	228419	11.28	111	161.00	602	0.03	180	241.25	155831	7.69	
	91.05	46032	2.27	112	162 05	482	0.02	181	242.10	54386	2.69	
Ĭ Ĭ	94.00	4180	0.21	113	163.05	3714	0.18	182	243.15	12588	0.62	
	01.00	8422	0.47	114	164.05	12889	0.64	183	244.10	56178	2.77	
ž	06.14	1188	0.07	115	165.05	22436	1.13	184	245.05	8044	0.40	
12	97 10	2596	0.13	116	166.05	47284	2.33	185	246.10	9770	0.48	
	02 10	1490	0.12	117	167.05	66156	3.29	186	247.10	1503	0.07	
10	00.10	2721	0.13	118	168.00	102111	5.04	187	254.35	1823	0.09	
47	100.14	011	0.04	119	169.05	77098	3.81	188	255.25	1072	0.53	
50	100.15	2760	0.14	120	169.95	174770	8.63	189	256.15	3888	0.19	
31	101.10	2/50	0.17	121	170.95	74461	3.68	190	257.15	1891	0.09	
52	102.10	4402	0.24	122	172.00	19018	1.93	191	258.15	4289	0.21	
53	103.10	1242	0.50	122	172.05	11808	0.58	192	259.15	3074	0.15	
54	104.05	11790	0.36	134	173.95	1105	0.06	193	260.15	2910	0.14	
55	105.05	7012	0.35	124	176.15	810	0.04	194	261.15	2231	0.11	
56	106.10	11636	0.57	125	177.16	2401	0.12	195	267.20	1594	0.08	
57	107.05	13258	0.65	120	178.15	1969	0.79	196	283.25	376	0.02	
58	108.00	3873	0.19	12/	176.12	10107	0.10	107	284.24	1803	0.00	
59	109.15	1378	0.07	126	179.15	16701	1 41	108	284 20	7125	0.15	
60	110.05	979	0.05	129	180.15	96701	1.01	170	285.20	14747	0.33	
61	111.05	2440	0.12	130	161.10	18802	0.93	200	280.20	222220	0.75	
62	12.05	2793	0.14	13	182.15	14965	0.14	200	267.15	23239	1.15	
63	113.05	9979	0.49	132	183.05	3441	0.17	201	288.20	24,3,34	141	
64	114.05	12822	0.63	133	184.00	2350	0.12	202	289.15	30011	1.81	
44	115.00	27724	1.37	134	1\$5.10	1281	0.06	203	290.15	36028	.78	
	116.05	18052	0.89	135	\$6.05	1167	0.06	204	291.10	11612	0.57	
41	117.00	11988	2.67	136	190.05	602	0.03	205	292.15	6462	0.32	
07	110.05	26835	1.33	137	91.05	1736	0.09	206	293.15	552	0.03	
68	110.02	43451	2.15	138	192.05	12467	0.62	207	306.20	302	0.01	
69	119.00	15724	0.75	139	193.05	17901	0.\$8	208	304.10	636	0.03	
70	120.05	4978	0.74	140	194.05	131489	6.49	209	310.05	707	0.03	
71	121.10	9043	0.10	140	195.05	146464	7.23	210	314.25	1728	0.09	
72	122.05	2005	0.05	142	196.00	323593	15.98	211	315.20	18481	0.91	
73	123.10	1327	0.03	143	197.05	113333	5.60	212	316.25	23945	1.13	
74	124.05	682	0.00	144	198.00	620129	30.62	213	317.20	196281	9.69	
75	125.05	4002	0.20	145	198.95	99120	4.89	214	318.25	227987	11.26	
76	126.05	5459	0.27	146	200.00	113441	5.60	215	319.20	494574	24.42	
17	127.05	10480	0.52	147	200.04	16159	0.80	216	320.75	128304	0.10	
78	128.05	10844	0.54	147	100.93		0.00	-10	420.23	1992333	9.30	

Figure S20. Mass chart of compound 5.

 m/z 217 321.20 218 322.15 219 323.13 220 324.05 221 325.05 222 329.25 223 330.25 224 331.20 225 332.25 226 333.20 	Abs. In Rel. Inz. # 949119 46.87 227 206457 10.19 228 182324 9.00 229 37472 1.85 230 4024 0.20 231 824 0.04 232 1720 0.06 233 13207 0.71 235 31734 1.57 236	m/z Abs. Im 334.25 12617 335.20 61590 336.15 14251 337.20 12284 338.15 2137 347.20 470 349.20 1524 355.20 474 378.20 226 380.20 604	Ref. Int. # 0.62 237 3.04 238 0.70 239 0.61 240 0.11 241 0.02 242 0.03 243	m/z Abs. In 407.30 3812 408.35 4545 409.25 10425 410.35 4385 411.25 19850 412.25 \$834 413.25 4131 414.15 786	Rel. Int. 0.19 0.22 0.51 0.22 0.94 0.29 0.20 0.04
---	---	---	--	---	---

Figure S21. Mass chart of compound 5.

Figure S22. ¹H NMR chart of compound **6**.

Figure S23. ¹³C NMR chart of compound **6**.

Figure S24. IR chart of compound 6.

Figure S25. Mass chart of compound 6.

	m/z	Abs. In	Rei, Int.		m/z	Abs. In	Rel. Int.		m/z	122647	5.75
10	\$9.00	323380	14.56	79	128.15	17920	0.81	14\$	97.05	07486	36.13
11	60.00	19518	0.88	80	129.15	16582	0.75	149	108.00	111117	5.00
12	61.05	25294	1.14	81	130.15	23991	1.04	150	200.00	47049	6.62
13	62.05	85663	3.86	82	131.15	62358	2.61	152	201.00	27327	1.23
13	64.05	250676	11.29	84	133.15	66067	2.97	153	202.05	6591	0.30
16	65.00	718538	32.35	85	134.15	78340	3.53	154	203.15	3651	0.10
17	66.00	152620	6.87	86	135.15	69517	3.13	155	204.15	2634	0.12
18	66.95	28433	1.28	\$7	136.15	11769	0.53	156	205.10	3010	0.16
19	68.05	\$877	0.40	**	137.10	7681	0.35	137	206.05	11620	0.53
20	69.05	15359	0.69	89	138.15	13090	0.59	138	207.03	15928	0.72
21	70.05	8547	0.38	90	139.12	32322	5.29	160	209.05	33769	1.52
**	72.05	7256	0.33	97	141.05	90195	4.06	161	210.05	30291	1.36
24	73.05	29968	1.35	93	142.05	52676	2.37	162	211.05	\$\$042	2.48
25	74.05	26922	1.21	94	143.00	141599	6.38	163	212.05	30408	1.37
26	75.05	38018	1.71	95	144.00	54009	2.43	164	213.05	31320	0.85
27	76.05	89648	4.04	96	145.05	43425	1.96	165	214.05	18807 036T	0.42
28	77.05	535908	24.13	97	146.05	54032	2.43	160	215.02	19840	0.89
29	78.05	171375	7.73	94	147.10	12269	0.80	168	217.05	4333	0.20
30	79.05	194270	0.50	100	148.10	8704	0.37	169	218.05	4479	0.20
32	81.05	11176	0.50	101	150.15	38743	1.74	170	219.10	2612	0.12
33	82.15	5419	0.24	102	151.10	102964	4.64	171	220.10	778	0.04
34	83.10	15562	0.70	103	152.05	16710	0.75	172	221.15	397	0.06
35	84.15	7935	0.36	104	153.10	11177	0.50	73	222.15	1142	0.03
36	85.10	16374	0.74	105	154.10	14711	0.66	74	223.15	17074	0.81
37	86.15	16002	0.72	106	155.05	15641	0.70	175	224.05	20916	0.94
38	87.10	69636	3.14	107	105.05	15214	0.50	177	226.10	174902	7.87
39	88.15	32733	3.05	109	158.05	8233	0.37	178	227.15	189200	8.52
40	90.15	210874	0.19	110	159.10	16986	0.76	179	228.05	447454	20.15
42	91.10	688561	31.00	iŭ	160.05	4503	0.20	180	229.15	133404	6.01
43	92.15	463765	20.88	112	161.15	4537	0.20	181	230.05	\$99020	40.48
44	93.10	862055	38.81	113	162.15	5173	0.23	182	231.05	114924	5.17
45	94.05	112159	5.05	114	163.15	35647	1.60	183	232.05	173318	7.80
46	95.00	27708	1.25	115	164.10	195450	8.80	184	233.05	21037	0.97
47	96.10	5274	0.24	116	165.05	20811	4.15	185	234.05	1179	0.14
48	97.10	9146	0.41	117	67.05	149177	6.72	187	236.15	3807	0.17
49	98.13	12962	0.24	119	168.05	172761	7.78	188	237.05	8985	0.40
\$1	100.14	13487	0.61	120	169.05	226041	10.18	189	238.15	10887	0.49
52	101.10	60012	2.70	121	170.00	257615	11.60	190	239.10	48174	2.17
ŝ	102.15	30642	1.38	122	171.00	96798	4.36	191	240.10	75681	3.41
54	103.15	\$8585	3.99	123	172.00	69998	3.15	192	241.10	157647	7.10
55	104.10	204116	9.19	124	173.00	21033	0.95	193	242.15	186228	8.38
56	105.15	159966	7.20	125	174.10	7897	0.36	194	243.10	230793	10.39
57	106.10	568420	23.39	120	175.13	7737	0.34	195	244.05	65413	2.07
58	107.10	12680	0.40	128	177.15	62536	2.82	197	246.05	36727	1.65
59	106.05	3710	0.17	129	178.10	605762	27.27	198	247.20	22822	1.03
61	110.15	3039	0.14	130	179.05	72024	3.24	199	248.15	7827	0.35
62	111.15	9856	0.44	131	180.05	20815	0.94	200	249.15	2124	0.10
63	112.15	15347	0.69	132	1\$1.10	26969	.21	201	250.25	1855	0.08
64	113.10	93675	4.22	133	182.05	36544	1.65	202	251.20	7351	0.33
65	114.15	34219	1.54	134	183.10	26080	1.26	203	252.15	3123	0.14
66	115.10	49390	2.22	135	185.00	10010	0.00	204	253.15	0626	0.30
67	16.15	38664	1.74	130	186.00	10711	0.48	203	209.13	/024	0.32
68	17.10	636407	2.87	138	187.05	6116	0.29	200	255.10	19212	0.87
69	18.15	142044	6.44	139	188.25	4750	0.2	208	257.10	20007	1.31
70	120.10	98100	4.42	140	189.15	25047	1.13	209	258.15	10175	0.46
12	21.05	14291	0.64	141	190.15	9994	0.45	210	259.20	21718	0.98
73	22.10	5969	0.27	142	191.15	57570	2.59	211	260.15	6061	0.27
74	23.05	3081	0.14	143	192.10	2754	3.73	212	261.15	4356	0.20
75	124.15	1538	0.07	144	193.05	33585	1.51	213	262.15	3391	0.15
76	125.15	3955	0.18	145	194.05	240000	7.76	214	263.15	3353	0.15
77	126.15	7068	0.32	147	195.03	413670	1.21	215	264.10	1687	0.06
70	127.15	19469	0.88	147	190.00	-13070	16.93	216	265.15	3515	0.16

Figure S26. Mass chart of compound 6.

100

		-	4 L L	Rel Int							Abs In	Rel. Int.	
	217	266.11	2637	0.12		m/z	Abs. In	Rol. Int.		187 10	279	0.01	
	218	267.10	18146	0.12	274	320.15	36	0.04	112	188.25	396	0.02	
	219	268.15	20158	0.91	279	378 14	6050	0.77	119	389.35	651	0.03	
	220	269.10	46736	2.11	280	329 15	21224	1.05	140	390.25	1290	0.06	
	221	270.15	15694	0.71	281	330.15	29151	1.31	341	391.35	1022	0.05	
	222	271.10	96137	4.33	282	331.15	50733	2.28	342	392.30	1966	0.09	
	223	272.05	16070	0.72	283	332.15	33893	1.53	343	393.35	1297	0.05	
		273.10	21305	0.96	284	333.15	\$344	3.98	344	394.30	940	0.04	
	226	274.03	3890	0.18	285	334.05	24078	1.08	345	395.30	473	0.02	
	227	276.25	1245	0.09	286	335.15	19856	0.89	346	396.43	384	0.02	
	228	277.20	2796	0.13	287	330.15	4338	0.20	347	397.30	1070	0.03	
	229	278.15	1435	0.06	789	338.15	662	0.00	340	100.44	117	0.01	
	230	279.15	\$98	0.04	290	339.30	1502	0.07	350	400.20	370	0.02	
	231	280.15	727	0.03	291	340.25	578	0.03	351	401.20	289	0.01	
	232	281.15	2475	0.11	292	341.25	684	0.03	352	402.20	250	0.01	
	233	242.15	2409	0.11	293	342.25	584	0.03	353	403.20	257	0.01	
	2.54	283.10	5790	0.26	294	343.25	805	0.04	354	404.45	336	0.02	
	255	284.12	12202	0.16	295	344.20	1958	0.09	355	405.40	1146	0.05	
	237	285.10	1148	0.33	296	343.25	2706	0.12	356	406.35	447	0.02	
	238	287.10	5833	0.25	200	340.20	14.40	0.18	357	407.40	2/1	0.01	
	239	288.25	2633	0.12	299	347.25	7434	0.21	358	409.43	282	0.02	
	240	289.15	7201	0.32	300	349.15	2478	0.12	340	411 10	181	0.01	
	241	290.15	2596	0.12	301	350.15	2611	0.12	361	412.50	284	0.01	
	242	291.20	2186	0.10	302	351.20	977	0.04	362	415.50	254	0.01	
	243	292.15	1131	0.05	303	352-15	764	0.03	363	417.50	207	0.01	
	244	293.25	594	0.07	304	353.25	847	0.04	364	418.50	257	0.01	
	245	294.25	1118	0.05	305	354.15	553	0.02	365	419.50	354	0.02	
	240	295.20	3343	0.24	305	355.25	657	0.03	366	421.50	326	0.01	
	248	290.15	1/01	0.06	307	356.25	704	0.03	367	423.50	396	0.02	
	249	298.35	617	0.04	300	357.25	12292	0.16	368	425.50	250	0.01	
	250	299.30	823	0.04	310	350.20	*2793 41607	1.93	309	420.00	410	0.01	
	251	300.25	1273	0.06	311	360.20	448631	20.20	171	428.33	459	0.02	
	252	301.25	1429	0.06	312	361.25	490508	22.09	122	430.30	231	0.02	
	253	302.25	2061	0.09	313	362.20	113024	50.89	373	432.30	222	0.01	
	254	303.30	3346	0.15	314	363.25	435043	19.50	374	433.30	212	0.01	
	255	304.35	3895	0.18	315	364.20	222099	100.00	375	434.30	201	0.01	
	256	305.30	14001	0.63	316	365.15	516139	23.24	376	436.40	250	0.01	
	257	306.20	5001	0.25	317	366.15	453240	20.41	377	437.45	688	0.03	
	238	305.13	2296	0.10	318	367.15	94607	4.26	378	438.35	497	0.02	
	260	309 30	902	0.04	319	368.15	2332	0.61	379	439.50	431	0.02	
	261	310.25	583	0.03	320	309.13	4468	0.10	380	441.50	303	0.01	
	262	311.35	721	0.03	322	371.25	1111	0.05	383	442.50	233	0.01	
	263	312.35	712	0.03	323	372.20	3146	0.23	382	451 50	210	0.01	
	264	313.35	1160	0.05	324	373.25	5093	0.23	384	457 50	289	0.01	
	265	314.35	803	0.04	325	374.25	54806	2.47	385	454.45	304	0.01	
	266	315.35	918	0.04	326	375.25	61887	2.79	386	455.40	1104	0.01	
	267	316.35	904	0.04	327	376.20	44442	6.50	387	456.35	499	0.05	
	268	317.30	4386	0.20	328	377.25	48025	2.16	333	457.10	265	0.01	
	269	318.25	2391	0.11	329	378.20	271025	12.20	389	458.15	443	0.02	
	270	319.25	2801	0.13	330	379.15	67760	3.05	390	459.10	218	0.01	
	271	320.25	1770	0.08	331	380.20	56982	2.57	391	460.20	433	0.02	
	272	321.20	4260	0.19	332	381.15	13270	0.60	392	462.20	287	0.01	
	273	322.25	2058	0.09	333	382.13	2142	0.10	393	463.40	473	0.02	
1.3	274	323.25	2501	0.11	334	363.20	484	0.02	394	464.40	252	0.01	
	275	324.25	243	0.04	333	344.20	230	0.01	395	466.40	212	0.01	
	276	325.15	208	0.02	330	340.20	213	0.01					

Figure S27. Mass chart of compound 6.

4-((2-(methoxycarbonyl)-4-(methylselanyl)phenyl)amino)-4-oxobut-2-enoic acid (7)

Figure S29. ¹³C NMR chart of compound **7**.

Figure S30. IR chart of compound 7.

Spectrum RT 0:54 - 1:23 (65 scans) - Background Subtracted 0 - 0:50

 Alaasar_DS052-2_Scan1_is1.datx 2023.03.01 14:09:33 ;

 Intensity

 ESI + Max: 2.7E6

Figure S32. MS chart of compound 7.

Figure S34. ¹³C NMR chart of compound 8.

Figure S35. IR chart of compound 8.

4-((2-(methoxycarbonyl)-4-(methylselanyl)phenyl)amino)-4-oxobut-2-enoic acid (9)

Figure S39. ¹³C NMR chart of compound 9.

Figure S40. IR chart of compound 9.

Figure S42. MS chart of compound 9.

4-((2-(methoxycarbonyl)-4-(methylselanyl)phenyl)amino)-4-oxobut-2-enoic acid (10)

Figure S44. ¹³C NMR chart of compound 10.

Figure S45. IR chart of compound 10.

Figure S47. MS chart of compound 10.

Figure S48. MS chart of compound 10.

4-((2-(methoxycarbonyl)-4-(methylselanyl)phenyl)amino)-4-oxobut-2-enoic acid (11)

Figure S49. ¹H NMR chart of compound 11.

Figure S50. ¹³C NMR chart of compound 11.

Figure S51. IR chart of compound 11.

Figure S52. MS chart of compound 11.

Figure S53. MS chart of compound 11.

Figure S54. MS chart of compound 11.

4-((2-(methoxycarbonyl)-4-(methylselanyl)phenyl)amino)-4-oxobut-2-enoic acid (12)

Figure S56. ¹³C NMR chart of compound 12.

Figure S57. IR chart of compound 12.

Figure S58. MS chart of compound 12.

Figure S59. MS chart of compound 12.

Figure S60. MS chart of compound 12.

Figure S61. Radar bioavailability for studied compounds in which the area in pink displays specific property optimal range. (LIPO = lipophilicity expressed as XLOGP3 (range from -0.7 to 5.0). SIZE= size expressed as molecular weight (range from 150 g/mol to 500 g/mol). POLAR = polarity expressed as TPSA (topological polar surface area) (range from 20 Å² to 130 Å²). INSOLU = water insolubility by log S (ESOL) (range from -6 to 0). INSATU = insaturation expressed as for each carbons fraction in sp3 hybridization (range from 0.25 to 1). FLEX = flexibility, expressed as number of rotatable bonds (range from 0 to 9).

Figure S62. Cytotoxic inhibitory concentration 50 (IC_{50}) evaluation of the investigated compounds against HCT₁₁₆, HEPG2, A375, MDA-MB-468, and A431 cancer cell lines.

Figure S63. Cytotoxic inhibitory concentration 50 (IC₅₀) evaluation of the investigated compounds against HCT₁₁₆ cancer cell line.

Figure S64. Cytotoxic inhibitory concentration 50 (IC₅₀) evaluation of the investigated compounds against HEPG2 cancer cell line.

Figure S65. Cytotoxic inhibitory concentration 50 (IC₅₀) evaluation of the investigated compounds against A375 cancer cell line.

Figure S66. Cytotoxic inhibitory concentration 50 (IC₅₀) evaluation of the investigated compounds against MDA-MB-468 cancer cell line.

Figure S67. Cytotoxic inhibitory concentration 50 (IC₅₀) evaluation of the investigated compounds against A431 cancer cell line.

Materials and Methods

SI 1. Chemistry

SI 1.1. Material and methods

Melting points were recorded in degree centigrade on a Gallenkamp instrument using the standard open capillary method. The IR spectra were recorded on FTIR 5000 Mattson spectrophotometer. The ¹H- and ¹³C-NMR spectra were recorded in DMSO– d_6 on a Varian 400 and 500 Spectrophotometer (¹H: 400 and 500 MHz, ¹³C: 101 and 125 MHz) at 295 K. The chemical shifts (δ) are given in parts per million (ppm) downfield relative to tetramethyl silane (TMS). Mass Spectra were recorded on Bruker micrOTOFQ II APPI mass spectrometer. Compounds **2–6** were obtained according to our literature reports ^{1, 2}, and the new compounds **7–12** obtained according to our literature reports³.

SI 1.2. Synthesis and characterization

The synthesis of OSe maleanilic 7, 9, and 11 and succinanilic 8, 10, and 12 derivatives

Maleic or succinic anhydride (1.3 mmol) was added to OSe amine (1.0 mmol) in methylbenzene (3.0 mL). The solution was stirred for 8 hrs. Then, the formed precipitate was filtered and washed with warm methylbenzene and water. The acids were obtained in enough purity, and no further purifications were needed.

Synthesis of methyl 2-amino-5-selenocyanatobnzoate (2)^{1,4}

Methyl 2-amino-5-selenocyanatobenzoate (2) was synthesized from methyl 2aminobenzoate (12.5 mmol, 1.80 g) with triselenium dicyanide prepared *in situ* from malononitrile (15 mmol, 1.00 g) and selenium dioxide (30 mmol, 3.30 g). It was isolated as reddish solid; yield:3.07 g (96%); m.p. = 118–119 °C; Rf = 0.4 (petroleum ether / ethyl acetate 4:2, v/v). IR (KBr): v 3475 (N-H), 3366 (N-H), 2946 (C_{aliph}-H), 2842 (C_{aliph}-H), 2148 (CN), 1691 (C=O), 1551 (C=C), 1253 (C_{Ar}–N), 1085 (C–O), 910, 815 (C-H bending), 556 (C-Se), 536 (C-H rocking), 460; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.02 (s, 1H, Ar-H), 7.57 (d, J = 8.8 Hz, 1H, Ar-H), 7.08 (s, br, 2H, NH₂), 6.84 (d, *J* = 8.8 Hz, 1H, Ar-H), 3.82 (s, 3H, OCH₃). ¹³C NMR (101 MHz, DMSO- *d*₆) δ 166.73, 152.22, 140.09, 137.94, 118.28, 109.59, 105.54, 105.47, 51.73. MS (EI, 70 ev) m/z (%) = 259.35 (M+3H, 2.39), 117 (29.02), 87 (26.6), 75 (2.70), 59 (100.0, base peak).

Synthesis of dimethyl 5,5'-diselanediylbis(2-aminobenzoate) (3)^{1,4}

Compound dimethyl 5,5-diselanediylbis(2-aminobenzoate) (**3**) was synthesized from methyl 2-amino-5-selenocyanatobenzoate (4 mmol, 1.00 g) and sodium hydroxide (4 mmol, 1.60 g) in anhydrous ethanol (20 mL). Dimethyl 5,5'-diselanediylbis(2-aminobenzoate) (**3**) appeared as a single compound on TLC and was isolated as a yellow solid; yield: 1.69 g (92%); m.p. = 138–139 °C; Rf = 0.5 (petroleum ether / ethyl acetate 4:3, v/v). IR (KBr): v 3455 (N-H), 3344 (N-H), 2931 (C_{aliph}-H), 2890 (C_{aliph}-H), 2168 (CN), 1684 (C=O), 1560 (C=C), 1603, 1238 (C_{Ar}–N), 1079 (C–O), 811, 784 (C-H bending), 699 (C-H rocking), 533 (C-Se); ¹H NMR (400 MHz, DMSO- d₆) δ 7.70 (s, 2H, Ar-H), 7.44 (d, J = 8.6 Hz, 2H, Ar-H), 7.00 (s, 4H, 2NH₂), 6.77 (d, J = 8.6 Hz, 2H, Ar-H), 3.74 (s, 6H, 2OCH₃). ¹³C NMR (101 MHz, DMSO- d₆) δ 167.00, 151.91, 140.57, 138.13, 117.63, 113.57, 108.98, 51.52. MS (EI, 70 ev) m/z (%) = 460.15 (M+H, 20.76), 459.15 (M, 5.20) or 230 (24.42), 119 (9.45), 91 (100.0, base peak), 65 (8.88).

Synthesis of methyl 2-amino-5-(methylselanyl) benzoate (4)^{1,4}

Compound **4** was synthesized from dimethyl 5,5'-diselanediylbis (2-aminobenzoate) (**3**) (2 mmol, 916 mg) and methyl iodide (4.4 mmol, 0.27 mL). It was isolated as brown oil; yield: 402 mg (82%); Rf = 0.6 (petroleum ether / ethyl acetate 4:2, v/v). IR (KBr): v 3474 (N-H), 3364 (N-H), 2948 (C_{aliph}-H), 2926 (C_{aliph}-H), 1686 (C=O), 1607, 1292 (C_{Ar}–N), 1110 (C–O), 815, 789, 696 (C-H bending), 559 (C-Se); ¹H NMR (400 MHz, DMSO- d₆) δ 7.82 (s, 1H, Ar-H), 7.40 (d, J = 8.6 Hz, 1H, Ar-H), 6.77 (d, J = 8.6 Hz, 1H, Ar-H), 6.75 (s, 2H, NH₂), 3.62 (s, 3H, OCH₃), 2.22 (s, 3H, CH₃). ¹³C NMR (101 MHz, DMSO- d₆) δ 167.70, 151.00, 138.90, 135.03, 118.21, 113.98, 109.87, 51.98, 9.17. MS (EI, 70 ev) m/z (%) = 245.10 (M, 100.0, base peak), 230 (38.06), 186 (10.46), 170 (35.08), 91 (91.10).

Synthesis of methyl 2-amino-5-(benzylselanyl) benzoate (5)^{1, 4}

Compound **5** was synthesized from dimethyl 5,5'-diselanediylbis(2-aminobenzoate) (**3**) (2 mmol, 916 mg) and benzyl chloride (4.4 mmol, 0.50 mL). It was isolated as light brown solid; yield: 597 mg (93%); m.p. = 78 °C; Rf = 0.6 (petroleum ether / ethyl acetate 4:3, v/v). IR (KBr): v 3462 (N-H), 3353 (N-H), 2977 (C_{aliph}-H), 2946 (C_{aliph}-H), 1672 (C=O), 1621, 1436, 1234 (C_{Ar}-N), 1114 (C-O), 810 (C-H bending), 692 (C-H rocking), 595 (C-Se); ¹H NMR (400 MHz, DMSO- d₆) δ 7.70 (s, 1H, Ar-H), 7.30 (d, J = 8.6 Hz, 1H, Ar-H), 7.23 (dd, J = 8.6 Hz, J = 2.1 Hz, 2H, Ar-H),

7.19 (d, J = 8.7 Hz, 2H, Ar-H), 7.14 (d, J = 8.6 Hz, 2H, Ar-H), 6.82 (s, 2H, NH₂), 4.00 (s, 2H, SeCH₂), 3.77 (s, 3H, OCH₃); ¹³C NMR (101 MHz, DMSO- d₆) δ 167.69, 151.53, 141.06, 139.66, 137.95, 129.24, 128.65, 126.98, 117.87, 112.42, 109.68, 51.94, 32.75. MS (EI, 70 ev) m/z (%) = 321.20 (M, 46.87), 244.10 (2.77), 230 (34.88), 150.15 (1.02), 91.05 (100.0, base peak).

Synthesis of methyl 2-amino-5-((2-oxo-2-(phenylamino) ethyl) selanyl) benzoate (6)^{1,4}

Compound **6** was synthesized from dimethyl 5,5'-diselanediylbis (2-aminobenzoate) (**3**) (2.0 mmol, 916 mg) and 2-chloro-N-phenylacetamide (4.4 mmol, 744 mg). It was isolated as violet solid; yield: 699 mg (96%); m.p. = 126-128 °C; Rf = 0.50 (petroleum ether / ethyl acetate 4:2, ν/ν). IR (KBr): ν 3466 (N-H), 3354 (N-H), 3246 (N-H), 2945 (C_{aliph}-H), 1678, 1594 (C=O), 1542 (C=C), 1439, 1238 (C_{Ar}-N), 1090 (C-O), 752 (C-H bending), 695, 552 (C-Se), 539 (C-H rocking); ¹H NMR (400 MHz, DMSO- d₆) δ 9.99 (s, 1H, NH), 7.96 (s, 1H, Ar-H), 7.53 (d, J = 8.6 Hz, 2H, ArH), 7.48 (d, J = 8.6 Hz, 1H, ArH), 7.30 (dd, J = 8.6 Hz, J = 2.1 Hz, 2H, Ar-H), 7.04 (t, 1H, J = 8.6 Hz, Ar-H), 6.86 (s, 2H, NH₂), 6.75 (d, J = 8.6 Hz, 1H, Ar-H), 3.74 (s, 3H, OCH₃), 3.42 (s, 2H, SeCH₂); ¹³C NMR (101 MHz, DMSO- d₆) δ 168.65, 167.65, 151.81, 141.13, 139.49, 138.20, 129.14, 123.74, 119.62, 117.89, 111, 109.71, 51.93, 32.33. MS (EI, 70 ev) m/z (%) = 364.20 (M, 100.0, base peak), 230 (40.48), 91.10 (31), 77.05 (24.13), 59 (14.56).

SI 2. GI% of the investigated organoselenium compounds (7-12) against a series of cancer and normal cell lines

The antitumor activities of the investigated organoselenium compounds (**7-12**) against all tested cell lines were evaluated by sulphorhodamine-B (SRB) assay ⁵. Briefly, cells were seeded at a density of 3×10^3 cells/well in 96-well microtiter plates. They were left to attach for 24 h before incubation with the aforementioned compounds. Next, cells were treated with 100 µg/mL for **7-12** candidates.

For each concentration, three wells were used and incubation was continued for 48 h. DMSO was used as a control vehicle (1 % v/v). At the end of incubation, cells were fixed with 20% trichloroacetic acid, and stained with 0.4% SRB dye. The optical density (O.D.) of each well was measured spectrophotometrically at 570 nm using an ELISA microplate reader (TECAN sunriseTM, Germany). The mean survival fraction at each drug concentration was calculated as follows: O.D. of the treated cells/O.D. of the control cells. The IC₅₀ (concentration that produces

50% of cell growth inhibition) value of each drug was calculated using sigmoidal dose-response curve-fitting models (Graph Pad Prizm software, version 8).

SI 3. Cytotoxic inhibitory concentration 50 (IC₅₀) evaluation against HCT₁₁₆, HEPG2, A375, MDA-MB-468, and A431 cancer cell lines

The antitumor activities of the investigated organoselenium compounds (**7-12**) against HCT116, HEPG2, A375, MDA-MB-468, and A431 cells, were evaluated by sulphorhodamine-B (SRB) assay⁵. Briefly, cells were seeded at a density of 3×10^3 cells/well in 96-well microtiter plates. They were left to attach for 24 h before incubation with the aforementioned compounds. Next, cells were treated with different concentrations of 62.5, 12.5, 25, and 50 µg/mL for **3-17** candidates.

For each concentration, three wells were used and incubation was continued for 48 h. DMSO was used as a control vehicle (1 % v/v). At the end of incubation, cells were fixed with 20% trichloroacetic acid, and stained with 0.4% SRB dye. The optical density (O.D.) of each well was measured spectrophotometrically at 570 nm using an ELISA microplate reader (TECAN sunriseTM, Germany). The mean survival fraction at each drug concentration was calculated as follows: O.D. of the treated cells/O.D. of the control cells. The IC₅₀ (concentration that produces 50% of cell growth inhibition) value of each drug was calculated using sigmoidal dose-response curve-fitting models (Graph Pad Prizm software, version 8).

SI 4. Protein expression of the apoptosis-related genes

The microplate provided in this kit has been pre-coated with an antibody specific to P53, BAX, Caspases 3, 6, 8, and 9, BCL-2, MMP2, and MMP9. Standards or samples are then added to the appropriate microplate wells with a biotin-conjugated antibody specific to P53, BAX, Caspases 3, 6, 8, and 9, BCL-2, MMP2, and MMP9. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain P53, BAX, Caspases 3, 6, 8, and 9, BCL-2, MMP2, and MMP9, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a color change. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of 450 nm \pm 10 nm. The concentration of P53, BAX, Caspases 3, 6, 8, and 9, BCL-2, MMP2, and MMP9 in the samples is

then determined by comparing the O.D. of the samples to the standard curve. Average the duplicate readings for each standard, control, and sample, and subtract the average zero standard optical density. Construct a standard curve by plotting the mean O.D. and concentration for each standard and draw a best-fit curve through the points on the graph or create a standard curve on log-log graph paper with P53, BAX, Caspases 3, 6, 8, and 9, BCL-2, MMP2, and MMP9 concentration on the y-axis and absorbance on the x-axis. Using some plot software, for instance, Curve Expert 1.30, is also recommended. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

Procedure

1. Determine wells for diluted standard, blank, and samples (8, 9, 10, and 11). Prepare 7 wells for standard, 1 well for blank. Add 100 μ L each of dilutions of standard, blank, and samples into the appropriate wells. Cover with the Plate sealer. Incubate for 1 h at 37 °C.

2. Remove the liquid from each well, don't wash.

3. Add 100 μ L of Detection Reagent A working solution to each well, cover the wells with the plate sealer, and incubate for 1 h at 37 °C.

4. Aspirate the solution and wash with 350 μ L of 1× Wash Solution to each well using a squirt bottle, multi-channel pipette, manifold dispenser, or autowasher, and let it sit for 1~2 min. Remove the remaining liquid from all wells completely by snapping the plate onto absorbent paper. Totally wash 3 times. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against absorbent paper.

5. Add 100 μ L of Detection Reagent B working solution to each well, cover the wells with the plate sealer, and incubate for 30 min at 37 °C.

6. Repeat the aspiration/wash process for a total of 5 times as conducted in step 4.

7. Add 90 μ L of Substrate Solution to each well. Cover with a new Plate sealer. Incubate for 10-20 min at 37 °C (Don't exceed 30 min). Protect from light. The liquid will turn blue with the addition of a Substrate Solution.

8. Add 50 μ L of Stop Solution to each well. The liquid will turn yellow with the addition of the stop solution. Mix the liquid by tapping the side of the plate. If the color change does not appear uniform, gently tap the plate to ensure thorough mixing.

9. Remove any drop of water and fingerprint on the bottom of the plate and confirm there is no bubble on the surface of the liquid. Then, run the microplate reader and conduct measurement at 450 nm immediately.

References

- 1. B. Al-Abdallah, Y. S. Al-Faiyz and S. Shaaban, *Biomolecules*, 2022, **12**, 1765.
- 2. M. Sak, Y. S. Al-Faiyz, H. Elsawy and S. Shaaban, *Antioxidants*, 2022, **11**, 1231.
- 3. S. Shaaban, Y. S. Al-Faiyz, G. M. Alsulaim, M. Alaasar, N. Amri, H. Ba-Ghazal, A. A. Al-Karmalawy and A. Abdou, *Inorganics*, 2023, **11**, 321.
- 4. B. Al-Abdallah, Y. S. Al-Faiyz and S. Shaaban, *Inorganics*, 2022, **10**, 246.
- 5. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd, *JNCI: Journal of the National Cancer Institute*, 1990, **82**, 1107-1112.