Supporting Information

Enhancement of Weak Signals by Suppressing High-Intense Methyl and Methylene Signals of Lipids in NMR Spectroscopy

Upendra Singh,¹ Abdul-Hamid Emwas*,² Mariusz Jaremko*³

¹Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia ²Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia

³Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia

Corresponding Authors

Abdul-Hamid Emwas Email: abdelhamid.emwas@kaust.edu.sa

Mariusz Jaremko Email: mariusz.jaremko@kaust.edu.sa

Table of Contents:

Table	e S1. N	MR	acquisit	ion pai	ramet	ers fo	or measu	iremei	1ts	•••••	•••••	S3
Fig.	S1.	Pro	ojected	1D	$^{1}\mathrm{H}$	of	TOCS	SY a	nd	SMLS-TOCSY	of of	cheese
samp	le	•••••	••••••	.S4								
Fig.	S2.	2D	NMR	spect	tra o	f S	SMLS-T	OCSY	and	I TOCSY-SU	N of	cheese
samp	le	•••••	S5									
Fig. S	53. Ty	pical	1D ¹ H, a	nd ¹ H	-SML	S of	butter s	ample.				S6
0	• •	-						-		I TOCSY-SU		
-	le			•								
Fig. S	5. Tv	nical	1D ¹ H. a	nd ¹ H	-SML	S of	a stock s	olutio	n of lir	oids sample		
U	• •	-							-	of a stock so		
0			-			,						-
	-									of a stock sol		
0												-
										e		
0	• •		•						-	oconut oil sam		
Fig. S	510. Pi	roject	ted 1D ¹ l	H of T	OCSY	and	SMLS-	TOCS	Y of c	- oconut oil samp		S13
Fig. S	511. T <u>y</u>	ypica	l 1D ¹ H,	and ¹ H	I-SMI	LS of	f olive oi	l samp	le	••••••••••••	•••••	S14
Fig. S	512. 2I	D NM	IR spect	ra of T	OCSY	l, an	d SMLS	-TOC	SY of	olive oil sample	2	S15
Fig.S	13. Pr	oject	ed 1D ¹ E	I of TC	DCSY	and	SMLS-7	FOCS	Y of ol	ive oil sample	•••••	S16
Table	e S2. R	Residu	ue intens	sity of s	suppre	essed	l peaks a	nd In	crease	d intensity of o	therpea	ksS17
Pulse	Prog	rams	of 1D ¹ H	I-SML	.S, and	1 2D	SMLS-	FOCS	Y	-	_	S19

NMR acquisition parameters for measurements

Table S1. Experimental data for cheese, butter, a stock solution of lipids, coconut oil, and olive oil samples.

Experiment	Acq	D ₁	SW	Data	NS	FID	Zero	LB	Δ	WDW	Expt
Name	(s)	(s)	(ppm)	points		Res.	Fillin	Hz	ms		Time
						(Hz)	g				
1D ¹ H	2.0	10	20.15	64516	64	0.5	131K	0.3	-	EM	13 m,
											38 s
1D ¹ H-SMLS					-	-	-	-	20	-	13 m,
											51 s
TOCSY	0.2	1.5	12.01	5768	8	3.33	8192	1.0	-	QSINE	2 h, 33
	99	_	12.01	600	_	32.0	1024	0.3	20	QSINE	m, 40 s
	0.0					5	-				2 h, 37
SMLS-TOCSY	31										m, 51 s
	0.2								-		
TOCOV CUN	0.2 99	1.5	12.01	57(0	8	3.33	0102	1.0		OCDIE	
TOCSY-SUN	99	1.5	12.01	5768	8	22.0	8192	1.0	-	QSINE	2 h, 44
	0.0	-	12.01	600	-	32.0	1024	0.3		QSINE	m, 31 s
	31					5					

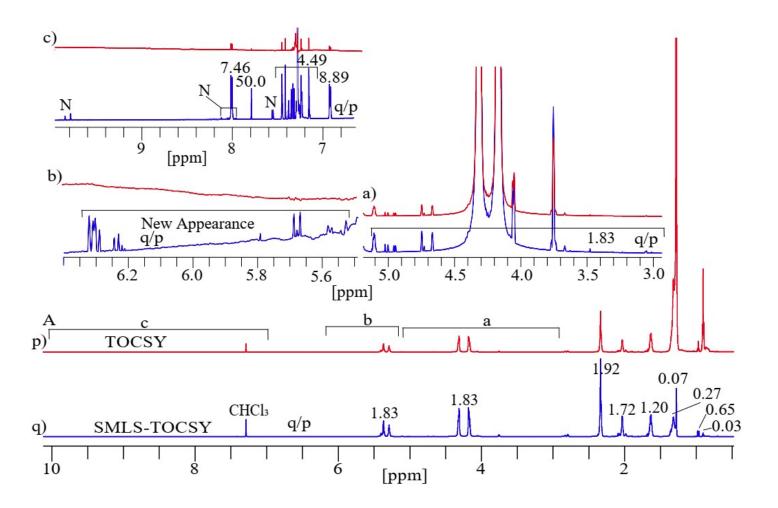


Fig. S1. (A) Typical projected 1D ¹H of TOCSY (p), and SMLS-TOCSY (q) of cheese sample divided into the sections of a, b, and c those were shown in expanded spectra of regions 3.00 - 5.10 ppm (a), 5.50 - 6.40 ppm (b), and 6.78 - 9.98 ppm (c) with estimated peak intensities in numbers and N is for new.

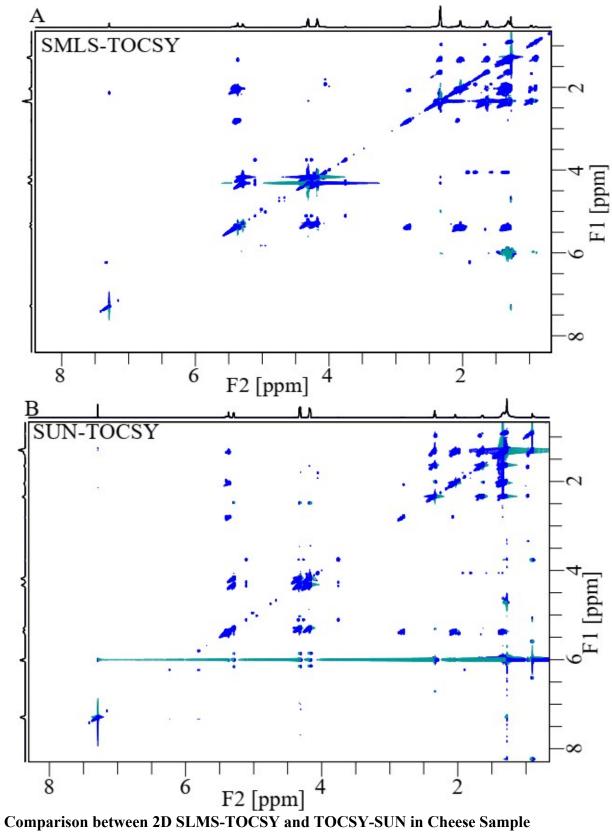


Fig. S2. represents the 2D NMR spectra of SMLS-TOCSY in (A), and TOCSY-SUN in (B) of cheese sample.

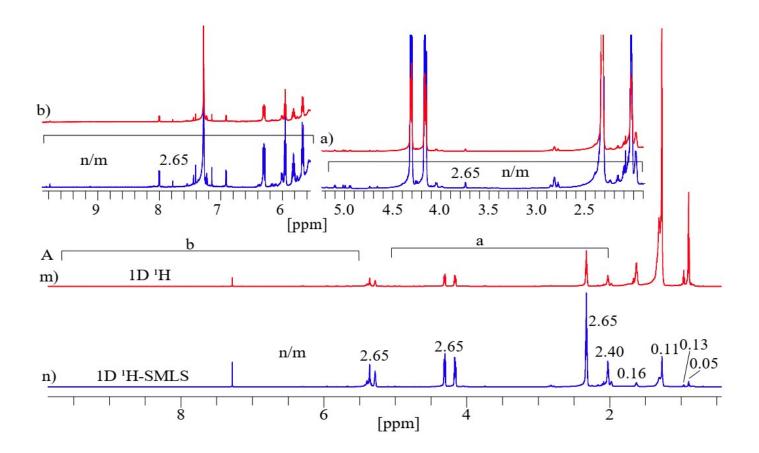
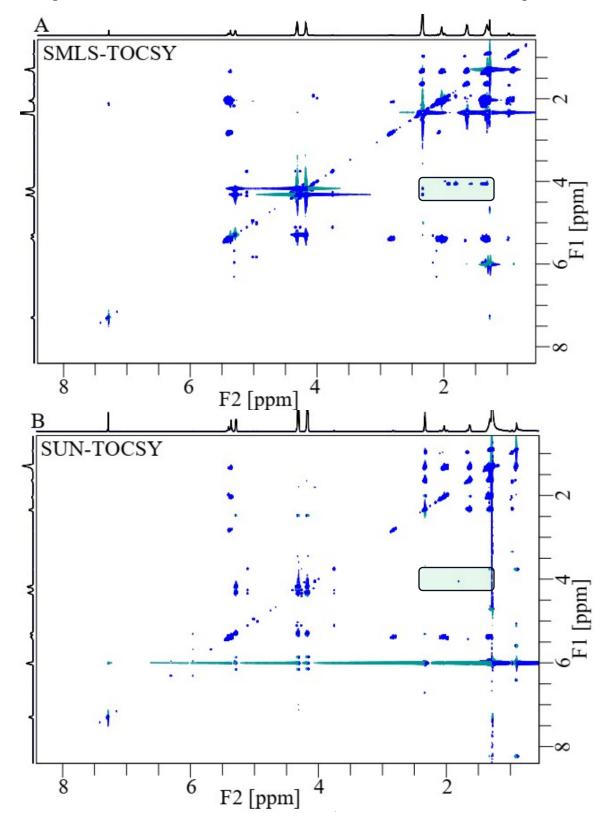



Fig. S3. (A) Typical 1D 1 H (m), and 1 H-SMLS (n) of butter sample divided into the sections of a, and b those were shown in expanded spectra of regions 1.95 - 5.20 ppm (a), and 5.60 - 9.90 ppm (b) with estimated peak intensities in numbers.

Comparison between 2D SLMS-TOCSY and TOCSY-SUN in Butter Sample

Fig. S4. represents the 2D NMR spectra of SMLS-TOCSY in (A), and TOCSY-SUN in (B) of butter sample.

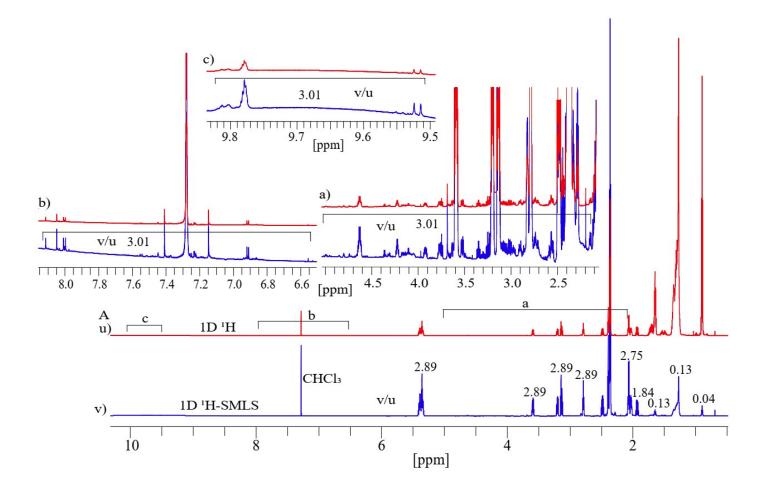


Fig. S5. (A) Typical 1D 1 H (u), and 1 H-SMLS (v) of a stock solution of lipids sample divided into the sections of a, b, and c those were shown in expanded spectra of regions 2.10 - 5.00 ppm (a), 6.65 - 8.95 ppm (b), and 9.50 - 9.83 ppm (c) with estimated peak intensities in numbers.

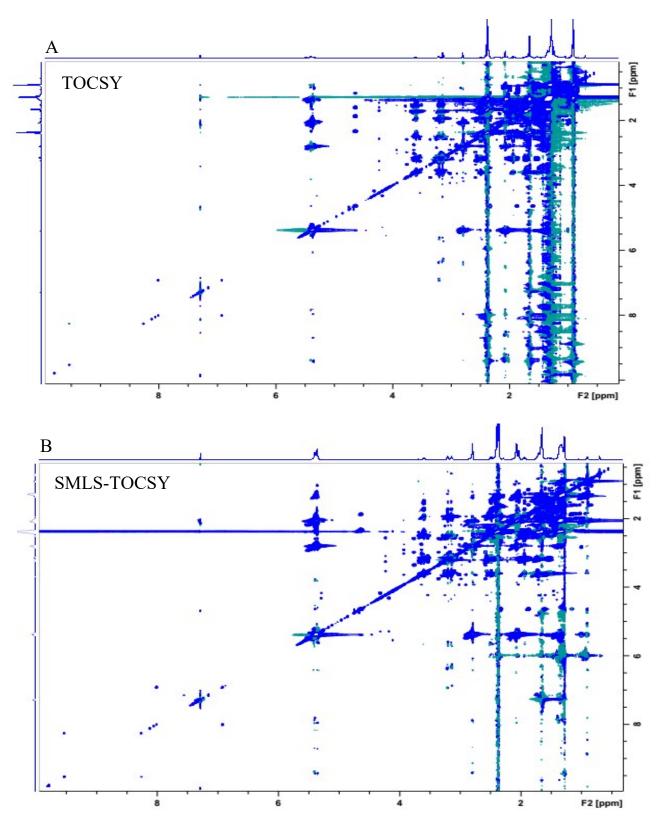


Fig. S6. represents the 2D NMR spectra of TOCSY in (A), and SMLS-TOCSY in (B) of a sample prepared of a stock solution of few lipids with known concentrations in CDCl₃ solvent.

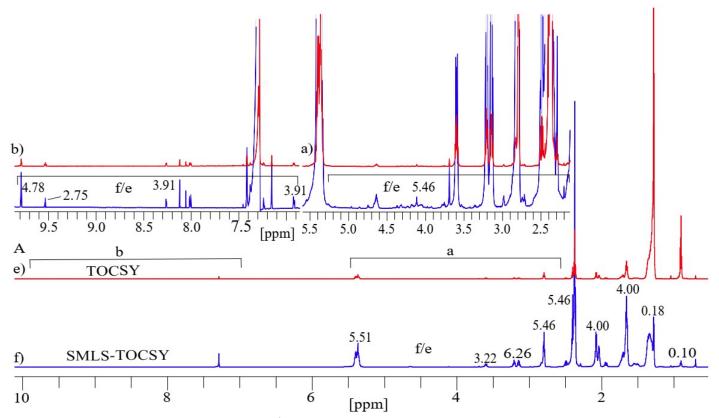


Fig. S7. (A) Typical projected 1D 1 H of TOCSY (e), and SMLS-TOCSY (f) of a stock solution of lipids sample divided into the sections of a, and b those were shown in expanded spectra of regions 2.18 - 5.50 ppm (a), and 7.00 - 9.81 ppm (b) with estimated peak intensities in numbers.

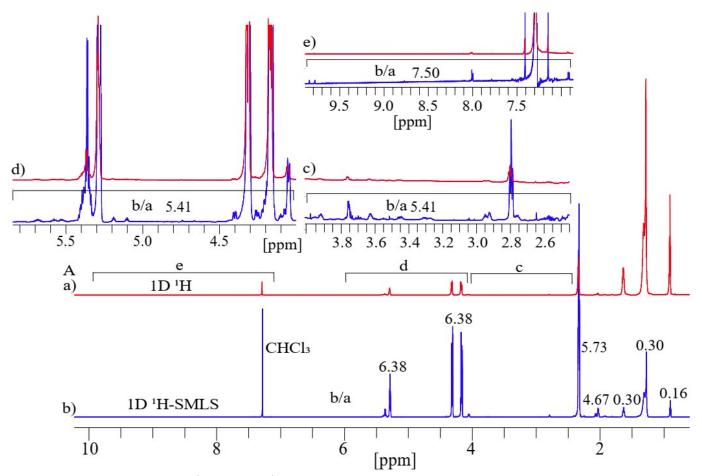


Fig. S8. (A) Typical 1D 1 H (a), and 1 H-SMLS (b) of coconut oil sample divided into the sections of c, d, and e were shown in expanded spectra of regions 2.45 - 4.00 ppm (c), 4.01 - 5.85 ppm (d), and 6.95 – 9.85 ppm (e) with estimated peak intensities in numbers.

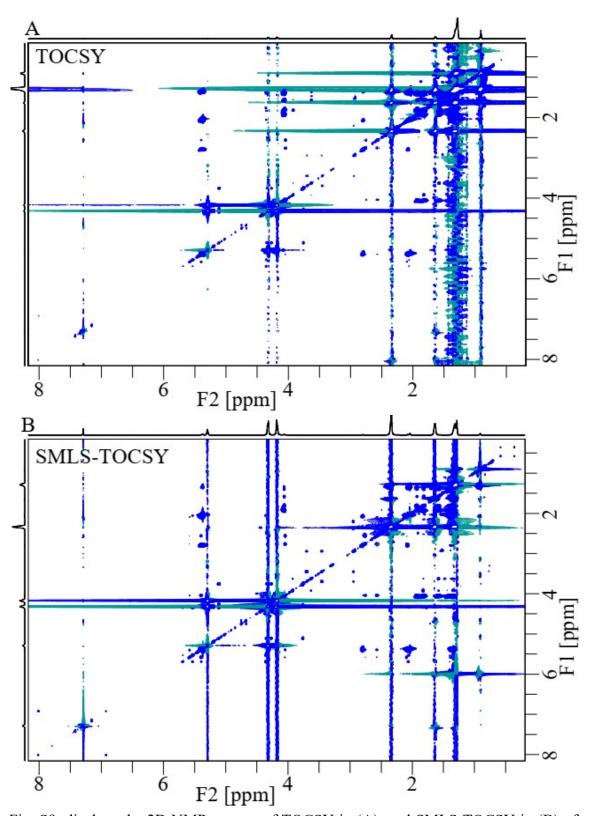


Fig. S9. displays the 2D NMR spectra of TOCSY in (A), and SMLS-TOCSY in (B) of coconut oil sample dissolved in CDCl₃ solvent. Suppression of methylene groups resulted in significantly enhanced visibility in (B).

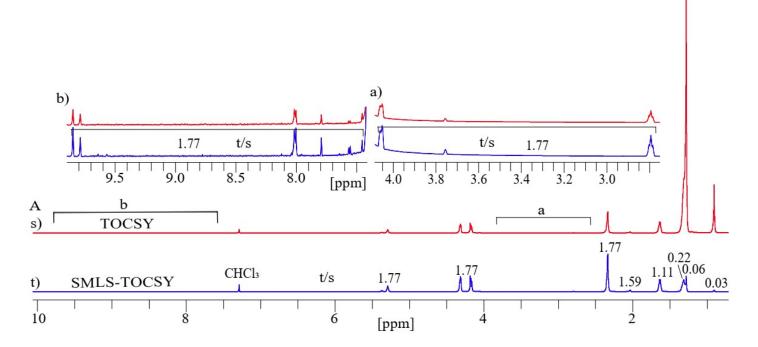


Fig. S10. (A) Typical projected 1D 1 H of TOCSY (s), and SMLS-TOCSY (t) of coconut oil sample divided into the sections of a, and b those were shown in expanded spectra of regions 2.80 - 4.05 ppm (a), and 7.50 - 9.85 ppm (b) with estimated peak intensities in numbers.

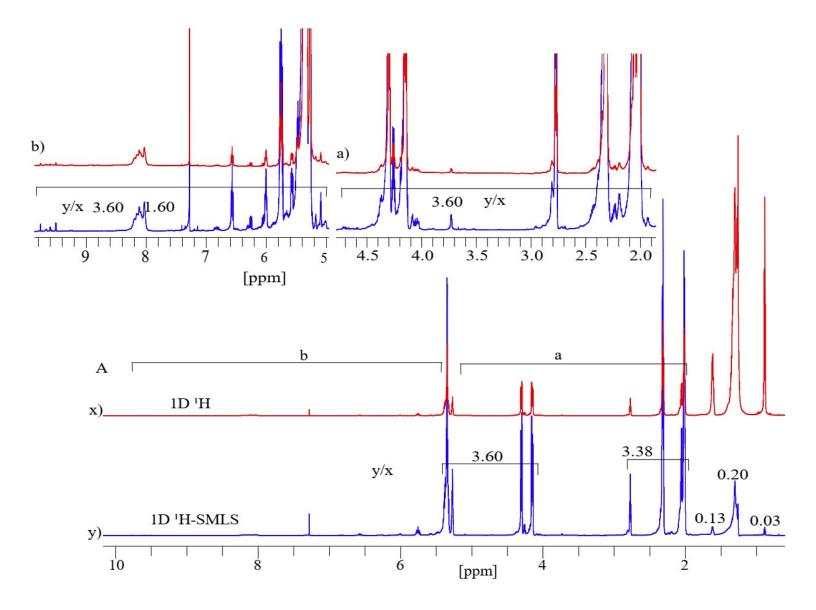


Fig. S11. (A) Typical 1D 1 H (x), and 1 H-SMLS (y) of olive oil sample divided into the sections of a, and b those were shown in expanded spectra of regions 1.90 - 4.70 ppm (a), and 5.00 - 9.80 ppm (b) with estimated peak intensities in numbers.

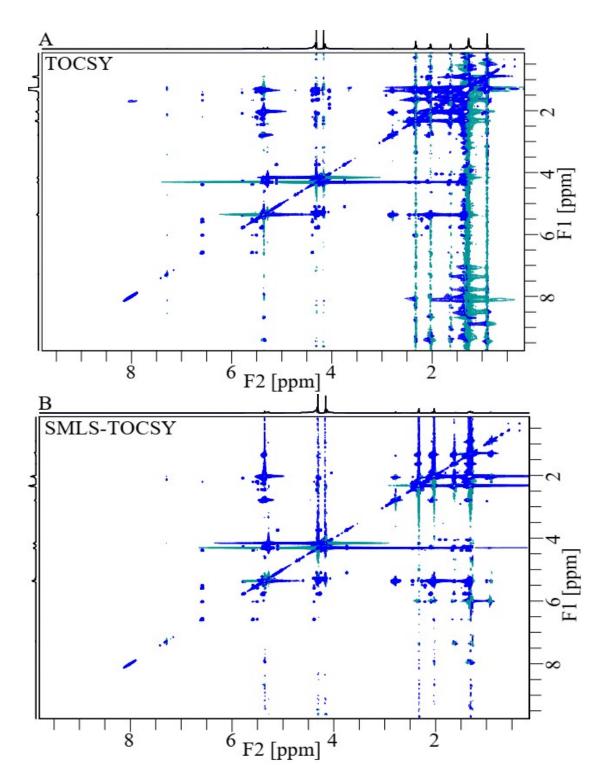


Fig. S12. represents the 2D NMR spectra of TOCSY in (A), and SMLS-TOCSY in (B) of the olive oil sample. Suppression in the conventional method is significant resulting in greatly increased and clear visibility of cross-peaks.

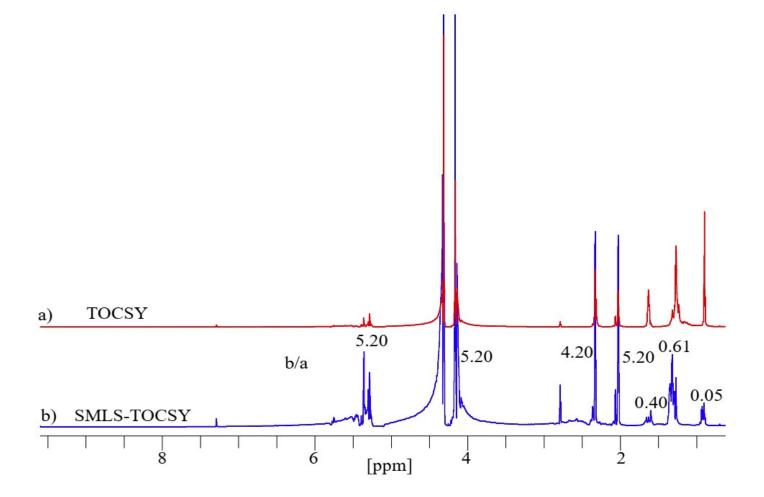


Fig. S13. (A) Typical projected 1D ¹H of TOCSY (a), and SMLS-TOCSY (b) of olive oil sample with estimated peak intensities in numbers.

Types of	Types of	Methyl Group	Methylene	Aliphatic	Aromatic
Experiments	Samples	(Supp.Res.Int.)	Group	Unsaturated	Unsaturated
			(Supp.Res.Int.)	groups	groups
				(Increa. Int.)	(Increa. Int.)
	Cheese				
1D ¹ H		1	1	1	1
¹ H-SMLS		0.08	0.20	2.77	2.77
Proj 1D ¹ H					
TOCSY		1	1	1	1
Proj 1D ¹ H					
SMLS-TOCSY		0.03	0.27	1.83	Av 6.94
	Butter				
1D ¹ H		1	1	1	1
¹ H-SMLS		0.05	0.11	2.65	2.65
Proj 1D ¹ H					
TOCSY		1	1	1	1
Proj 1D ¹ H					
SMLS-TOCSY		0.05	0.33	Av 3.13	Av 3.54
	ASSL				
1D ¹ H		1	1	1	1
¹ H-SMLS		0.04	0.13	3.01	3.01
Proj 1D ¹ H					
TOCSY		1	1	1	1
Proj 1D ¹ H					
SMLS-TOCSY		0.10	0.18	5.46	3.91
	Coco. Oil				
1D ¹ H		1	1	1	1
¹ H-SMLS		0.16	0.30	5.41	7.50
Proj 1D ¹ H					
TOCSY		1	1	1	1
Proj 1D ¹ H					

SMLS-TOCSY		0.03	0.22	1.77	1.77
	Olive oil				
1D ¹ H		1	1	1	1
¹ H-SMLS		0.03	0.20	3.6	3.6
Proj 1D ¹ H					
TOCSY		1	1	1	1
Proj 1D ¹ H					
SMLS-TOCSY		0.05	0.61	5.20	5.20

Pulse Programs of 1D ¹H-SMLS, and 2D SMLS-TOCSY

1D¹H-presat-SMLS with band-selective suppression

;¹H-SMLS ;avance-version (12/01/11) ;1D sequence with f1 presaturation ;\$CLASS=HighRes ;\$DIM=1D ;\$TYPE= ;\$SUBTYPE= ;\$COMMENT= #include <Avance.incl> #include <Grad.incl> #include <Delay.incl> "d12=20u" ;"TAU=50m" "acqt0=-p1*2/3.1416" 1 ze 2 30m d12;pl9:f1 d1 ;cw:f1 ph29 4u do:f1 20u UNBLKGRAD 4u pl0:f1 p11:sp1:f1 ph1:r d20 p16:gp1 d16 p11:sp1:f1 ph2:r d20 p16:gp2 d16 d12 pl1:f1

p1 ph2 4u BLKGRAD go=2 ph3130m mc #0 to 2 F0(zd)exit ph1=0ph2=0 2 2 0 1 3 3 1 ph31=0 2 2 0 1 3 3 1 ;pl1 : f1 channel - power level for pulse (default) ;pl9 : f1 channel - power level for presaturation ;p1 : f1 channel - 90 degree high power pulse ;d1 : relaxation delay; 1-5 * T1 ;d12: delay for power switching [20 usec] ;ns: 1 * n, total number of scans: NS * TD0 ;\$Id: zg,v 1.11 2012/01/31 17:49:32 ber Exp \$

2D SMLS-TOCSY with band-selective suppression

; SMLS-TOCSY

```
;avance-version (19/02/08)
```

;homonuclear Hartman-Hahn transfer using DIPSI2 sequence

; for mixing

;phase sensitive

;water suppression using excitation sculpting with gradients

```
;(use parameterset DIPSI2ESGPPH)
```

;A.J. Shaka, C.J. Lee & A. Pines, J. Magn. Reson. 77, 274 (1988)

;T.-L. Hwang & A.J. Shaka, J. Magn. Reson.,

; Series A 112 275-279 (1995)

;\$CLASS=HighRes

;\$DIM=2D

;\$TYPE=

;\$SUBTYPE=

;\$COMMENT=

```
prosol relations=<triple>
```

#include <Avance.incl>

#include <Delay.incl>

#include <Grad.incl>

"p2=p1*2"

"d11=30m"

"d12=20u"

"d13=4u"

"in0=inf1"

"d0=in0*0.5-p1*4/3.1416"

"TAU=de+p1*2/3.1416+4u"

"FACTOR1=(d9/(p6*115.112))/2"

"11=FACTOR1*2"

"acqt0=0"

baseopt_echo

1 ze

2 d11

3 d12 ;pl32:f1

d1 ;cw:f1 ph29

d13 do:f1

20u UNBLKGRAD

4u pl0:f1

p13:sp3:f1 ph1:r

d20

p16:gp1

;begin DIPSI2

- p6*3.167 ph23
- p6*4.556 ph23 p6*3.222 ph25
- p6*3.556 ph25

- p6*4.111 ph23
- p6*2.944 ph25
- p6*4.167 ph23
- p6*2.722 ph25
- p6*0.333 ph23
- p6*3.167 ph25

- p6*3.222 ph23

4 p6*3.556 ph23

p6*4.556 ph25

d16

d20

d16

p16:gp2

d12 pl1:f1

p1 ph2

p1 ph3

p16:gp3

d16 pl10:f1

;50u UNBLKGRAD

d0

p13:sp3:f1 ph1:r

S23

;end DIPSI

4u

p16:gp4

d16 pl1:f1

p6*0.333 ph25

p6*2.722 ph23

p6*4.167 ph25

p6*2.944 ph23

p6*4.111 ph25

p6*3.556 ph25

p6*4.556 ph23

p6*3.222 ph25

p6*3.167 ph23

p6*0.333 ph25

p6*2.722 ph23

p6*4.167 ph25

p6*2.944 ph23

p6*4.111 ph25

p6*3.556 ph23

p6*4.556 ph25

p6*3.222 ph23

p6*3.167 ph25

p6*0.333 ph23

p6*2.722 ph25

p6*4.167 ph23

p6*2.944 ph25

p6*4.111 ph23

lo to 4 times 11

p1 ph4 p16:gp5 d16 pl0:f1 (p12:sp1 ph5:r):f1 4u d12 pl1:f1 p2 ph6 4u p16:gp5 d16 TAU p16:gp6 d16 pl0:f1 (p12:sp1 ph7:r):f1 4u d12 pl1:f1 p2 ph8 4u p16:gp6 d16 4u BLKGRAD go=2 ph31 d11 mc #0 to 2 F1PH(calph(ph1, +90) & calph(ph29, +90), caldel(d0, +in0)) exit ph1=0 ph2=0 2 ph3=0 0 0 0 2 2 2 2 2

- ph5=0 0 1 1
- ph6=2 2 3 3
- ph7=000011111
- ph8=2 2 2 2 3 3 3 3
- ph23=3
- ph25=1
- ;ph29=0
- ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 2 0 0 2
- ;p10:0W
- ;pl1 : f1 channel power level for pulse (default)
- ;pl10: f1 channel power level for TOCSY-spinlock
- ;pl32: f1 channel power level for low power presaturation
- ;sp1 : f1 channel shaped pulse 180 degree
- ;p1 : f1 channel 90 degree high power pulse
- ;p2 : f1 channel 180 degree high power pulse
- ;p6 : f1 channel 90 degree low power pulse
- ;p12: f1 channel 180 degree shaped pulse (Squa100.1000) [2 msec]
- ;p16: homospoil/gradient pulse
- ;d0 : incremented delay (2D)
- ;d1 : relaxation delay; 1-5 * T1
- ;d9 : TOCSY mixing time
- ;d11: delay for disk I/O [30 msec]
- ;d12: delay for power switching [20 usec]
- ;d13: short delay [4 usec]
- ;d16: delay for homospoil/gradient recovery
- ;11: loop for DIPSI cycle: ((p6*115.112) * 11) = mixing time

;inf1: 1/SW = 2 * DW;in0: 1/(1 * SW) = 2 * DW ;nd0: 1 ;ns: 8 * n ;ds: 16 ;td1: number of experiments ;FnMODE: States-TPPI, TPPI, States or QSEQ ;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4 1: 3: 31: 11 ; ;for z-only gradients: ;gpz1:1% ;gpz2: 3% ;gpz3: 31% ;gpz4: 11% ;use gradient files: ;gpnam1: SMSQ10.100 ;gpnam2: SMSQ10.100 ;gpnam3: SMSQ10.100 ;gpnam4: SMSQ10.100

;set pl32 to 0W when presaturation is not required

; use pl1 + 75 to 80dB to reduce radiation damping

;Processing

;PHC0(F1): 90

;PHC1(F1): -180

;FCOR(F1): 1

;\$Id: dipsi2esgpph,v 1.15 2019/02/11 14:04:14 ber Exp \$