Theoretical study of the catalytic hydrodeoxygenation of furan, methylfuran and benzofurane on MoS₂: Electronic Supporting Information

Wilfried G. Kanhounnon^{*, a}, Saber Gueddida^{*, b}, Simplice Koudjina^a, Frédéric Richard^d, Guy Y. S. Atohoun^a, Jean-François Paul^e, Sébastien Lebègue^b and Michael Badawi^{*, b,c}

 ^aLaboratoire de Chimie Physique – Matériaux et Modélisation Moléculaire (LCP3M) / Unité de Chimie Théorique et de Modélisation Moléculaire (UCT2M), Université d'Abomey-Calavi, Cotonou Bénin.
^bUniversité de Lorraine, Laboratoire de Physique et Chimie Théoriques, Vandoeuvrelès-Nancy 54506, France.
^cUniversité de Lorraine, CNRS, L2CM, F-57000 Metz, France
^dUniversité de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, UMR 7285, rue Michel Brunet, BP633, 86022 Poitiers, France.
^eUnité de Catalyse et Chimie du Solide (UCCS), Université Lille, CNRS UMR8181, F-59650 Villeneuve d'Ascq Cedex, France.

Corresponding authors:

Wilfried G. Kanhounnon [:] gbedode.kanhounnon@uac.bj	
Saber Gueddida:	saber.gueddida@univ-lorraine.fr
Michael Badawi:	michael.badawi@univ-lorraine.fr

FIG. S1. Reaction scheme for the DDO mechanism of furan ¹ and 2-methylfuran, R = H or -CH3, R = H corresponds to the case of furan where the two routes are equivalent.

 $^{^{1}}$ In this work, the DDO mechanism utilized is based on the well-established experimental and theoretical studies of the hydrodesulfurization mechanism of thiophene, with furan serving as its oxygen counterpart where the sulfur atom is substituted by an oxygen atom. (https://doi.org/10.1016/j.cattod.2018.02.013, https://doi.org/10.1021/acs.jpcc.6b02769).

FIG. S2. Reaction scheme for the DDO mechanism of benzofuran.

 $FIG.~S3.~Geometrical ~structures~of~the~DDO~route~of~furan~on~the~metal~edge~of~MoS_2~surface~using~the~PBE+D2~approximation.$

FIG. S4. Geometrical structures for vacancy regeneration on the metal edge of MoS_2 surface after oxygen atom removal from the studied molecules.

FIG. S5. Geometrical structures DDO (5H) route of the 2-methyl furan molecule on the metal edge of MoS_2 surface using the PBE+D2 approximation.

FIG. S6. Geometrical structures for DDO route of the benzofuran molecule on the metal edge of MoS_2 surface.