Synthesis, Anticancer and Antibacterial Evaluation of Novel Spiramycin-Acylated Derivatives

Zhiwei Wang^{a,b#}, Junxiang Cheng^{b#}, Hui Wen^b, Tao Hou^{a,b}, Fengbin Luo^b, Yaodong Wang^b, Xingjun Xu^{a,b}, Yanfang Liu^{a,b}, Yaopeng Zhao^{a,b}*, Xinmiao Liang^{a,b}*

^aKey Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
^bGanjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
[#]Zhiwei Wang and Junxiang Cheng were contributed equally to this work
*Corresponding authors: Yaopeng Zhao, Xinmiao Liang
Tel.: +86 411 84379519; fax: +86 411 84379539
E-mail addresses: ypzhao@dicp.ac.cn, liangxm@dicp.ac.cn

Table of Contents

1.	Characterization data of synthetic compounds 1-20 S										
2.	The HPLC, HR-ESI-MS and NMRs studies of 4"-isovalerylspiramycin I and										
	compound 1 from carrimycin and synthesis, respectively										
3.	Key ¹ H- ¹ H COSY and	HMBC	correlations	of o	compounds	9a	and				
	9b S26										
4.	1D and 2D NMR spectra of compound 9a										
5.	1D and 2D NMR spectra of compound 9b										
6.	HPLC analysis of compounds 9a, 9b, 10a and 10b										
7.	The effect	of	14		on	HGO	C-27				
	mitochondrion										
8.	Antibacterial SAR of spiramycin I derivates.										
9.	¹ H and ¹³ C NMR spectra of compounds 2-8 , 10-20										
10.	HRMS-ESI spectra of compounds 2-20										

Characterization data of synthetic compounds 1-20

4''-isovaleryl-Spiramycin I (1).

According to the method A, compound 1 could be obtained with 27% yield as white solid using spiramycin I and isovaleryl chloride as substrates. HRMS (ESI) for $C_{48}H_{82}N_2O_{15}$: calculated, $[M+H]^+ = 927.5788$, found 927.5870; ¹H NMR (600 MHz, $CDCl_3$) δ 9.83 (s, 1H), 6.25 (dd, J = 15.0, 10.8 Hz, 1H), 6.06 - 5.98 (m, 1H), 5.69 (dd, J = 15.0, 9.6 Hz, 1H), 5.57 (t, J = 12.0 Hz, 1H), 5.29 (s, 1H), 5.07 (s, 1H), 4.62 (d, J = 10.2 Hz, 1H), 4.47 (dd, J = 19.2, 8.4 Hz, 2H), 4.38 (d, J = 9.0 Hz, 1H), 4.12 (d, J = 8.4 Hz, 1H), 4.05 (d, J = 6.4 Hz, 2H), 3.81 (d, J = 10.8 Hz, 1H), 3.52 (d, J = 15.2 Hz, 4H), 3.46 – 3.39 (m, 1H), 3.29 (t, J = 8.0 Hz, 2H), 3.08 (d, J = 8.4 Hz, 1H), 2.79 (dd, J = 17.6, 9.2 Hz, 1H), 2.72 – 2.65 (m, 1H), 2.51 (s, 6H), 2.50 – 2.44 (m, 2H), 2.36 (d, J = 17.8 Hz, 1H), 2.30 (d, J = 7.2 Hz, 3H), 2.25 (d, J = 14.8 Hz, 2H), 2.18 – 2.07 (m, 3H), 2.03 - 1.99 (m, 1H), 1.94 (s, 1H), 1.87 - 1.80 (m, 3H), 1.47 (dt, J = 36.0, 12.0 Hz, 3H), 1.30 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 4.8 Hz, 6H), 1.14 (d, J = 6.0 Hz, 3H), 1.12 (s, 3H), 1.00 (s, 1H), 0.98 (d, J = 6.0 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 202.82, 174.23, 172.96, 134.64, 132.82, 131.02, 128.60, 103.89, 100.31, 97.03, 85.25, 79.34, 78.78, 75.97, 73.88, 73.08, 71.69, 69.37, 69.21, 68.72, 68.24, 64.86, 63.49, 61.82, 43.32, 43.25, 42.00, 41.71, 40.71, 37.68, 31.78, 31.29, 30.73, 30.54, 25.55, 25.35, 22.45, 22.40, 20.10, 18.96, 18.86, 18.41, 17.85, 15.31.

4"-n-hexanoyl-Spiramycin I (2).

According to the method A, compound 2 could be obtained with 50% yield as white solid using spiramycin I and n-hexanoyl chloride as substrates. HRMS (ESI) for $C_{49}H_{84}N_2O_{15}$: calculated, $[M+2H]^{2+}/2 = 471.3009$, found 471.3022; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 6.24 (dd, J = 15.1, 10.6 Hz, 1H), 6.02 (dd, J = 14.8, 10.9 Hz, 1H), 5.68 (dd, J = 15.1, 9.6 Hz, 1H), 5.58 (ddd, J = 15.1, 11.1, 4.0 Hz, 1H), 5.30 (ddd, J = 11.2, 6.3, 3.0 Hz, 1H), 5.08 (d, J = 3.5 Hz, 1H), 4.62 (d, J = 10.2 Hz, 1H),4.51 (d, J = 7.5 Hz, 1H), 4.43 (dd, J = 10.5, 5.9 Hz, 3H), 4.11 (d, J = 8.7 Hz, 1H), 4.04(dd, J = 9.5, 4.0 Hz, 2H), 3.80 (d, J = 10.8 Hz, 1H), 3.62 - 3.42 (m, 6H), 3.39 - 3.24(m, 3H), 3.08 (d, J = 8.6 Hz, 1H), 2.93 (dd, J = 28.9, 19.3 Hz, 1H), 2.84 - 2.74 (m, 2H),2.74 – 2.65 (m, 2H), 2.55 (s, 6H), 2.43 (s, 2H), 2.42 (s, 6H), 2.39 (dd, *J* = 6.5, 4.5 Hz, 3H), 2.33 (s, 2H), 2.27 (t, J = 5.3 Hz, 2H), 2.23 (s, 1H), 2.17 – 2.07 (m, 2H), 2.07 – 2.02 (m, 1H), 2.01 (d, J = 5.6 Hz, 2H), 1.94 – 1.89 (m, 2H), 1.86 – 1.81 (m, 1H), 1.67 (dd, J = 14.8, 7.4 Hz, 2H), 1.53 (t, J = 10.9 Hz, 3H), 1.37 – 1.29 (m, 12H), 1.24 (d, J = 5.3 Hz, 3H), 1.13 (d, *J* = 7.8 Hz, 6H), 0.98 (d, *J* = 6.6 Hz, 4H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl3) δ 202.81, 174.23, 173.75, 134.64, 132.82, 131.02, 103.89, 100.31, 97.02, 85.25, 79.35, 78.78, 75.95, 73.88, 73.08, 71.70, 69.37, 69.21, 68.72, 68.25, 64.86, 63.48, 61.82, 43.25, 42.00, 41.70, 40.71, 37.68, 34.26, 31.78, 31.34, 31.29, 30.73, 30.54, 25.31, 24.75, 22.30, 20.10, 18.96, 18.86, 18.41, 17.80, 15.31, 13.89.

4"-n-octanoyl-Spiramycin I (3).

According to the method B, compound 3 could be obtained with 19% yield as white solid using spiramycin I and n-octanoyl acid as substrates. HRMS (ESI) for $C_{54}H_{88}N_2O_{15}$: calculated, $[M+H]^+ = 969.6257$, found 969.6240; ¹H NMR (400 MHz, $CDCl_3$) δ 9.81 (s, 1H), 6.23 (dd, J = 14.8, 10.8 Hz, 1H), 6.08 (dd, J = 14.8, 10.8 Hz, 1H), 5.67 (dd, J = 14.8, 9.6 Hz, 1H), 5.61 – 5.52 (m, 1H), 5.34 – 5.21 (m, 1H), 5.11 (s, 1H), 4.53 (d, J = 6.8 Hz, 1H), 4.43 (d, J = 6.8 Hz, 1H), 4.11(s, 1H), 4.10 – 4.01 (m, 2H), 3.78 (d, J = 10.8 Hz, 2H), 3.61 (s, 1H), 3.56 – 3.52 (m, 1H), 3.50 (s, 3H), 3.32 (s, 2H), 3.09 (d, J = 8.4 Hz, 1H), 2.97 (s, 2H), 2.91 – 2.84 (m, 1H), 2.79 (dd, J = 17.6, 9.2 Hz, 2H), 2.71 – 2.62 (m, 2H), 2.50 (s, 2H), 2.48 (s, 6H), 2.46 – 2.40 (m, 3H), 2.37 (s, 1H), 2.33 – 2.23 (m, 3H), 2.15 – 2.06 (m, 1H), 2.03 – 2.00 (m, 2H), 1.92 – 1.90 (m, 2H), 1.75 – 1.70 (m, 1H), 1.68 – 1.61 (m, 2H), 1.59 – 1.54 (m, 2H), 1.52 – 1.45 (m, 1H), 1.37 - 1.36 (m, 4H), 1.32 - 1.23 (m, 22H), 1.00 - 2.62 (m, 1H), 0.97 (d, J = 6.4Hz, 3H), 0.87 (t, J = 5.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.95, 174.24, 169.64, 134.84, 132.56, 131.49, 128.15, 103.36, 99.77, 85.01, 79.58, 77.30, 72.64, 71.77, 70.40, 70.06, 69.26, 68.21, 67.16, 65.14, 61.89, 61.47, 43.54, 41.94, 40.80, 40.40, 37.64, 35.26, 31.85, 31.55, 30.76, 30.38, 29.13, 29.01, 28.95, 28.81, 28.79, 25.82, 25.00, 24.56, 22.64, 22.58, 22.54, 20.09, 20.00, 19.65, 19.12, 18.25, 15.23, 14.14, 14.07, 14.03.

4"-cyclohexanecarbonyl-Spiramycin I (4).

According to the method A, compound 4 could be obtained with 46% yield as white solid using spiramycin I and cyclohexanecarbonyl chloride as substrates. HRMS (ESI) for $C_{50}H_{84}N_2O_{15}$: calculated, $[M+H]^+ = 953.5944$, found 953.5965; ¹H NMR (600 MHz, CDCl₃) & 9.83 (s, 1H), 6.28-6.20 (m, 1H), 6.05-5.99 (m, 1H), 5.72-5.66 (m, 1H), 5.60-5.53 (m, 1H), 5.34 - 5.25 (m, 1H), 5.07 (d, J = 6 Hz, 1 H), 4.60 (d, J = 18.0 Hz, 1 H),4.49 (d, J = 6.0 Hz, 1H), 4.47 - 4.42 (m, 1H), 4.41 - 4.35 (m, 1H), 4.14 - 4.10 (m, 1H),4.07-4.03 (m, 2H), 3.81 (d, J = 12.0 Hz, 1H), 3.54 - 3.49 (m, 4H), 3.45-3.40 (m, 1H), 3.34 – 3.26 (m, 2H), 3.08 (d, J = 12.0 Hz, 1H), 2.82 – 2.76 (m, 1H), 2.72-2.65 (m, 1H), 2.51 (s, 6H), 2.50 – 2.45 (m, 2H), 2.48-2.40 (m, 1H), 2.40-2.34 (m, 1H), 2.33-2.28 (m, 1H), 2.25 (d, J = 12.0 Hz, 2H), 2.22 (s, 6H), 2.21-2.17(m, 1H), 2.14 – 2.07 (m, 1H), 2.02 - 1.98 (m, 1H), 1.97-1.91 (m, 3H), 1.87-1.81(m, 3H), 1.79 - 1.74 (m, 2H), 1.68-1.64(m, 1H), 1.56 - 1.39(m, 6H), 1.35 - 1.31(m, 1H), 1.30(d, J = 6.0 Hz, 4H), 1.28 - 1.01(m, 1H), 1.01(d, J = 6.0 Hz, 4H), 1.28 - 1.01(m, 1H), 1.01(d, J = 6.0 Hz, 4H), 1.28 - 1.01(m, 1H), 1.01(d, J = 6.0 Hz, 4H), 1.28 - 1.01(m, 1H), 1.01(d, J = 6.0 Hz, 4H), 1.28 - 1.01(m, 1H), 1.01(d, J = 6.0 Hz, 4H), 1.28 - 1.01(m, 1H), 1.01(d, J = 6.0 Hz, 4H), 1.00(d, J = 6.0 Hz, 41.25 (m, 2H), 1.23 (t, J = 6.0 Hz, 6H), 1.12 (d, J = 6.0 Hz, 3H), 1.10 (s, 2H), 0.99 (d, J= 6.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 202.94, 176.05, 174.35, 134.76, 132.94, 131.14, 128.71, 104.00, 100.43, 97.16, 85.37, 79.46, 78.90, 76.79, 76.08, 74.00, 73.20, 71.80, 69.48, 69.33, 68.86, 68.36, 64.98, 63.60, 61.95, 43.36, 43.33, 42.12, 41.83, 40.83, 37.80, 31.90, 31.41, 30.85, 30.65, 29.41, 29.19, 25.82, 25.59, 25.44, 25.41, 20.23, 19.08, 18.98, 18.53, 17.88, 15.43.

4"-n-hexadecyl-Spiramycin I (5).

According to the method B, compound 5 could be obtained with 12% yield as white solid using spiramycin I and hexadecanoic acid as substrates. HRMS (ESI) for $C_{59}H_{104}N_2O_{15}$: calculated, $[M+H]^+=1081.7509$, found 1081.7509; ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 6.66 – 6.50 (m, 1H), 6.16 – 6.03 (m, 1H), 5.85 – 5.70 (m, 1H), 5.64 (dd, J = 14.4, 9.6 Hz, 1H), 5.16 (d, J = 6.8 Hz, 1H), 5.08 (s, 1H), 5.07 - 4.98 (m, 1H), 4.87 (s, 1H), 4.61 (dd, J = 15.2, 10.0 Hz, 1H), 4.54 – 4.48 (m, 1H), 4.44 (dd, J =16.0, 8.8 Hz, 2H), 4.00 – 3.92 (m, 1H), 3.92 – 3.83 (m, 1H), 3.65 – 3.51 (m, 4H), 3.43 (td, J = 6.8, 1.6 Hz, 5H), 3.32 (dd, J = 16.4, 6.4 Hz, 2H), 3.25 (d, J = 14.4 Hz, 3H), 2.90-2.82 (m, 1H), 2.77 (dd, J = 21.6, 9.6 Hz, 2H), 2.60 (s, 1H), 2.55 (d, J = 15.2 Hz, 7H), 2.50 – 2.43 (m, 3H), 2.42 – 2.33 (m, 3H), 2.30 (s, 3H), 2.26 (s, 1H), 2.23 (s, 7H), 2.17 (s, 5H), 2.12 (s, 1H), 2.06 (d, J = 6.0 Hz, 1H), 2.03 (s, 2H), 1.94 – 1.83 (m, 7H), 1.71 (dd, J = 14.8, 3.2 Hz, 1H), 1.49 (d, J = 1.6 Hz, 6H), 1.44 (s, 3H), 1.35 (d, J = 5.6 Hz, 1.44 Hz)1H), 1.28 (d, J = 6.0 Hz, 4H), 1.23 (d, J = 6.0 Hz, 5H), 1.15 (s, 4H), 1.12 (d, J = 5.6Hz, 2H), 1.00 (t, J = 5.6 Hz, 4H), 0.92 (d, J = 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.90, 178.35, 174.25, 132.74, 131.17, 103.87, 100.23, 96.28, 85.24, 79.35, 79.03, 74.61, 73.39, 73.12, 71.73, 69.69, 69.25, 68.79, 68.22, 66.12, 64.57, 61.84, 43.31, 42.00, 40.88, 40.34, 37.66, 34.32, 31.93, 31.05, 30.76, 30.46, 29.69, 29.66, 29.62, 29.48, 29.36, 29.30, 29.18, 25.34, 24.94, 22.70, 20.11, 19.11, 18.98, 18.26, 15.32, 14.13.

4"-(N,N-dimethylaminoacetyl)-Spiramycin I (6).

According to the method B, compound 6 could be obtained with 13% yield as white solid using spiramycin I and N,N-dimethylglycine as substrates. HRMS (ESI) for $C_{47}H_{81}N_3O_{15}$: calculated, $[M+H]^+ = 928.5740$, found 928.5753; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 6.27 (dd, J = 15.2, 10.8 Hz, 1H), 6.04 (dd, J = 15.2, 10.8 Hz, 1H), 5.71 (dd, J = 15.2, 9.6 Hz, 1H), 5.62 – 5.55 (m, 1H), 5.33 – 5.28 (m, 1H), 5.10 (d, J = 3.2 Hz, 1H), 4.50 (d, J = 7.6 Hz, 1H), 4.41 (d, J = 8.8 Hz, 1H), 4.13 (d, J = 8.8 Hz, 1H), 4.07 (dd, J = 9.6, 4.4 Hz, 2H), 3.82 (d, J = 11.2 Hz, 1H), 3.59 – 3.54 (m, 2H), 3.52 (s, 3H), 3.46 (dd, *J* = 9.2, 6.4 Hz, 1H), 3.30 (dd, *J* = 6.0, 3.2 Hz, 2H), 3.10 (dd, *J* = 8.8, 1.2 Hz, 1H), 2.97 (d, J = 9.6 Hz, 2H), 2.90 (s, 2H), 2.85 – 2.76 (m, 2H), 2.70 (dd, J =14.8, 11.2 Hz, 2H), 2.52 (d, J = 12.4 Hz, 9H), 2.42 – 2.34 (m, 2H), 2.27 (d, J = 11.2 Hz, 9H), 2.12 (d, J = 13.6 Hz, 1H), 2.05 (d, J = 14.0 Hz, 1H), 1.99 – 1.94 (m, 1H), 1.88 (d, J = 9.6 Hz, 2H), 1.77 (dd, J = 14.4, 4.0 Hz, 1H), 1.50 (d, J = 9.2 Hz, 2H), 1.32 (d, J)= 6.0 Hz, 7H), 1.27 (d, J = 5.2 Hz, 9H), 1.04 - 0.96 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) & 202.83, 174.27, 134.69, 132.79, 131.12, 103.88, 100.25, 96.35, 85.26, 78.86, 77.23, 76.44, 73.65, 73.13, 71.72, 69.49, 69.23, 68.83, 68.22, 66.14, 64.87, 61.85, 60.65, 44.15, 43.28, 42.02 (2C), 40.88, 40.67 (2C), 37.65, 31.18, 30.74, 30.48, 25.43, 20.11, 19.09, 19.05, 18.29, 15.31.

4"-(2-morpholineacetyl)-Spiramycin I (7).

According to the method B, compound 7 could be obtained with 13% yield as white solid using spiramycin I and 2-morpholineacetic acid as substrates. HRMS (ESI) for $C_{49}H_{83}N_{3}O_{16}$: calculated, $[M+2H]^{2+}/2 = 485.7960$, found 485.7987; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 6.26 (dd, J = 15.2, 10.8 Hz, 1H), 6.04 (dd, J = 15.2, 10.8 Hz, 1H), 5.70 (dd, J = 15.2, 9.6 Hz, 1H), 5.59 (m, 1H), 5.31 (m, 1H), 5.10 (d, J = 3.2 Hz, 1H), 4.50 (d, J = 7.6 Hz, 1H), 4.44 – 4.38 (m, 1H), 4.17 – 4.09 (m, 1H), 4.07 (dd, J = 9.6, 4.4 Hz, 2H), 3.88 - 3.84 (m, 3H), 3.82 (d, J = 11.2 Hz, 1H), 3.59 - 3.53 (m, 2H), 3.52 (s, 3H), 3.47 (dd, *J* = 9.3, 6.2 Hz, 2H), 3.31 (d, *J* = 2.6 Hz, 2H), 3.28 (s, 3H), 3.10 (dd, J = 8.7, 1.1 Hz, 1H), 2.97 (d, J = 9.8 Hz, 1H), 2.88 - 2.83 (m, 3H), 2.83 - 2.76(m, 1H), 2.70 (dd, J = 14.6, 11.0 Hz, 1H), 2.53 (s, 6H), 2.49 (d, J = 9.8 Hz, 1H), 2.42 – 2.34 (m, 1H), 2.33 – 2.24 (m, 7H), 2.18 – 2.09 (m, 1H), 2.05 (d, J = 14.0 Hz, 1H), 1.77 (dd, J = 14.4, 3.8 Hz, 1H), 1.50 (td, J = 11.6, 2.7 Hz, 3H), 1.32 (d, J = 6.1 Hz, 6H), 1.29 - 1.24 (m, 19H), 1.06 - 0.95 (m, 4H). ¹³C NMR (101 MHz, CDCl3) δ 202.84, 174.26, 134.72, 132.76, 131.17, 128.47, 103.86, 100.21, 96.32, 85.26, 79.38, 78.95, 77.24, 76.43, 74.63, 73.44, 73.13, 71.68, 69.52, 69.24, 68.86, 68.22, 66.16, 66.03, 64.73, 61.85, 60.08, 53.24, 43.32, 42.02, 40.89, 40.51, 37.65, 31.78, 31.09, 30.76, 30.47, 25.42, 20.11, 19.10, 18.81, 18.29, 15.31.

4''-benzoyl-Spiramycin I (8).

According to the method B, compound **8** could be obtained with 37% yield as white solid using spiramycin I and benzoic acid as substrates. HRMS (ESI) for $C_{50}H_{78}N_2O_{15}$: calculated, $[M+H]^+ = 947.5475$, found 947.5479; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 8.09 (d, J = 6.8 Hz, 2H), 7.44 (d, J = 6.8 Hz, 2H), 6.32 – 6.19 (m, 1H), 6.10 – 5.94 (m, 1H), 5.70 (dd, J = 14.4, 9.6 Hz, 1H), 5.63 – 5.51 (m, 1H), 5.35 – 5.24 (m, 1H), 5.10 (s, 1H), 4.54 – 4.47 (m, 1H), 4.42 (d, J = 7.6 Hz, 1H), 4.12 (d, J = 8.4 Hz, 1H), 4.06 (dd, J = 6.0, 3.2 Hz, 2H), 3.81 (d, J = 10.8 Hz, 1H), 3.30 (d, J = 4.8 Hz, 2H), 3.09 (d, J = 8.4 Hz, 1H), 2.97 (dd, J = 9.6, 2.4 Hz, 1H), 2.84 – 2.77 (m, 1H), 2.74 – 2.64 (m, 2H), 2.54 (d, J = 2.0 Hz, 9H), 2.41 (d, J = 2.4 Hz, 7H), 2.37 – 2.26 (m, 3H), 2.24 (s, 1H), 2.18 – 2.09 (m, 1H), 2.05 (d, J = 13.6 Hz, 2H), 1.94 (dd, J = 2.0 Hz, 6H), 1.00 (d, J = 4.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 202.89, 174.25, 170.77, 134.72, 132.70, 132.37, 132.00, 131.24, 129.86, 128.17, 103.85, 100.19, 96.25, 85.22, 79.40, 74.49, 73.11, 73.02, 71.63, 69.72, 69.24, 68.87, 68.22, 66.21, 64.40, 61.84, 43.38, 42.00, 40.91, 40.12, 37.65, 31.88, 30.89, 30.78, 30.46, 25.37, 15.32.

4''-(4-tert-butylbenzoyl)-Spiramycin I (9a) and 3-(4-tert-butylbenzoyl)-Spiramycin I (9b).

According to the method B, compound **9a**, **9b** could be obtained with 20% and 20% yield as white solid using spiramycin I and 4-tert-butylbenzoic acid as substrates. HRMS (ESI) for $C_{54}H_{86}N_2O_{15}$: calculated, $[M+H]^+ = 1003.6101$, found **9a** 1003.5997, **9b** 1003.5993;

9a: ¹H NMR (600 MHz, CDCl₃) δ 9.83 (s, 1H), 8.08 – 8.00 (m, 2H), 7.54 – 7.45 (m, 2H), 6.28-6.22 (m, 1H), 6.05-6.00 (m, 1H), 5.72-5.66(m, 1H), 5.60-5.53 (m, 1H), 5.30 -5.26 (m, 1H), 5.13 (d, J = 6.0 Hz, 1H), 4.82 (d, J = 12.0 Hz, 1H), 4.63-4.57 (m, 1H), 4.51 (d, J = 6.0 Hz, 1H), 4.41 - 4.36 (m, 1H), 4.15 - 4.12 (m, 1H), 4.09 - 4.03 (m, 2H),3.81 (d, J = 12.0 Hz, 1H), 3.56-3.52(m, 1H), 3.52 (s, 3H), 3.45 – 3.40 (m, 1H), 3.36 – 3.27 (m, 2H), 3.09 (d, J = 8.8 Hz, 1H), 2.85-2.75 (m, 1H), 2.72-2.60 (m, 1H), 2.54 (s, 6H), 2.53-2.48 (m, 2H), 2.39 – 2.33 (m, 1H), 2.28-2.23 (m, 1H), 2.22 (s, 6H), 2.21-2.17 (m, 1H), 2.16 - 2.09 (m, 1H), 2.08 - 2.04 (m, 1H), 1.97-1.92 (m, 1H), 1.89 (dd, J =12.0, 6.0 Hz, 1H), 1.87-1.81 (m, 2H), 1.56 – 1.47 (m, 2H), 1.47 – 1.41 (m, 1H), 1.34 (s, 9H), 1.30 (d, J = 6.0 Hz, 3H), 1.26 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.0 Hz, 3H), 1.18 (d, J = 6.0 Hz, 3H), 1.16 (s, 3H), 0.99 (d, J = 6.0 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 202.84, 174.27, 166.39, 156.87, 134.68, 132.82, 131.04, 129.84, 128.54, 127.08, 125.41, 103.90, 100.30, 96.87, 85.27, 79.32, 78.77, 77.56, 75.50, 73.88, 73.12, 71.78, 69.52, 69.22, 68.77, 68.23, 64.86, 63.57, 61.86, 53.43, 43.24, 42.02, 41.69, 40.73, 37.66, 35.12, 31.74, 31.29, 31.12, 30.73, 30.49, 29.71, 25.44, 20.11, 18.97, 18.96, 18.38, 17.90, 15.31.

9b: ¹H NMR (400 MHz, CDCl₃) δ 9.60 (s, 1H), 8.00 (d, J = 4.0 Hz, 2H), 7.46 (d, J =

4.0 Hz, 2H), 6.65-6.55(m, 1H), 6.15 – 6.02 (m, 1H), 5.78 – 5.63 (m, 2H), 5.42 (d, J = 12.0 Hz, 1H), 5.15-5.00 (m, 2H), 4.44 (d, J = 8.0 Hz, 1H), 4.33 (d, J = 4.0 Hz, 1H), 4.17 – 3.99 (m, 2H), 3.75 (d, J = 4.0 Hz, 1H), 3.60-3.53(m, 4H), 3.50 – 3.40 (m, 1H), 3.32 (d, J = 8.0 Hz, 1H), 3.27 – 3.17 (m, 2H), 2.97 – 2.85 (m, 3H), 2.80-2.70 (m, 2H), 2.49 (s, 6H), 2.45-2.43 (m, 1H), 2.42-2.39 (m, 1H), 2.38-2.34 (m, 1H), 2.33-2.28 (m, 1H), 2.25 (s, 6H), 2.18 – 2.10 (m, 1H), 2.02 (d, J = 8.0 Hz, 1H), 1.97 (s, 1H), 1.92-1.82(m, 2H), 1.77 – 1.69 (m, 1H), 1.54 – 1.41 (m, 3H), 1.33 (s, 9H), 1.28 (d, J = 6.0 Hz, 3H), 1.26 – 1.22 (m, 10H), 1.16 (d, J = 4.0 Hz, 3H), 1.01 (d, J = 4.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.15, 170.12, 166.15, 156.40, 134.91, 132.38, 131.74, 129.74, 127.48, 125.38, 104.81, 100.27, 96.30, 84.08, 79.87, 79.32, 77.25, 76.40, 74.58, 73.71, 73.19, 71.82, 69.56, 69.45, 69.26, 68.78, 66.05, 64.85, 62.09, 43.22, 42.08, 41.32, 40.90, 40.65, 37.42, 35.07, 32.13, 31.25, 31.15, 30.19, 25.41, 20.30, 19.10, 19.05, 18.58, 18.27, 15.50.

4''-(4-n-butylbenzoyl)-Spiramycin I (10a) and 3-(4-n-butylbenzoyl)-Spiramycin I (10b).

According to the method B, compound **10a**, **10b** could be obtained with 25% and 13% yield as white solid using spiramycin I and 4-butylbenzoic acid as substrates. HRMS (ESI) for $C_{54}H_{86}N_2O_{15}$: calculated, $[M+H]^+ = 1003.6101$, found **10a** 1003.6126, **10b** 1003.6111;

10a: ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.02 – 7.94 (m, 1H), 7.24 (d, J = 8.4 Hz, 1H), 6.25 (dd, J = 15.2, 10.4 Hz, 1H), 6.02 (dd, J = 15.2, 10.8 Hz, 1H), 5.69 (dd, J = 15.2, 9.6 Hz, 1H), 5.57 (m, 1H), 5.29 (m, 1H), 5.08 (d, J = 3.2 Hz, 1H), 4.48 (d, J = 7.6 Hz, 1H), 4.40 (dd, J = 11.2, 3.6 Hz, 1H), 4.11 (d, J = 8.8 Hz, 1H), 4.06 (dt, J = 10.0, 5.2 Hz, 2H), 3.80 (d, J = 10.8 Hz, 1H), 3.57 – 3.49 (m, 5H), 3.49 – 3.41 (m, 2H), 3.28 (dd, J = 6.0, 3.2 Hz, 3H), 3.10 – 3.05 (m, 1H), 2.95 (d, J = 9.6 Hz, 1H), 2.84 – 2.74 (m, 1H), 2.73 – 2.63 (m, 2H), 2.11 (dd, J = 18.4, 6.8 Hz, 1H), 2.04 (d, J = 15.2 Hz, 1H), 1.97 – 1.84 (m, 3H), 1.76 (dd, J = 14.4,4.0 Hz, 1H), 1.61 (m, 1H), 1.55 – 1.44 (m, 3H), 1.36 (dd, J = 15.2, 7.2 Hz, 1H), 1.30 (d, J = 6.0 Hz, 6H), 1.24 (t, J = 6.4 Hz, 9H), 0.99 (d, J = 6.4 Hz, 4H), 0.93 (t, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 202.88, 174.26, 170.32, 148.14, 134.70, 132.76, 131.15, 129.96, 128.76, 128.94 – 128.14 (m), 128.47, 103.88, 100.25, 96.33, 85.25, 79.34, 78.96, 74.69, 73.52, 73.13, 71.75, 69.58, 69.24, 68.78, 68.22, 66.11, 64.67, 61.85, 43.29, 42.01, 40.88, 40.46, 37.66, 35.71, 33.33, 31.79, 31.12, 30.75, 30.47, 25.38, 22.32, 20.11, 19.10, 18.85, 18.28, 15.32, 13.92.

10b: ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.63-6.50 (m, 1H), 6.14-6.05 (m, 1H), 5.79 – 5.72 (m, 1H), 5.70-5.65 (m,

1H), 5.41 (d, J = 8.0 Hz, 1H), 5.04 (d, J = 4.0 Hz, 1H), 4.46-4.40(m, 1H), 4.34 (d, J = 8.0 Hz, 1H), 4.13 – 4.09 (m, 1H), 4.08 – 4.04 (m, 1H), 3.76 (d, J = 8.0 Hz, 1H), 3.56 (s, 3H), 3.55 – 3.48 (m, 1H), 3.47-3.43 (m, 1H), 3.32 (dd, J = 8.0, 4.0 Hz, 1H), 3.25 – 3.18 (m, 2H), 2.95-2.92 (m, 1H), 2.92 – 2.87 (m, 1H), 2.79-2.72 (m, 1H), 2.70 – 2.62 (m, 3H), 2.54 (s, 1H), 2.48 (s, 6H), 2.46-2.42 (m, 2H), 2.41-2.39 (m, 1H), 2.37 – 2.34 (m, 1H), 2.30 (d, J = 4.0 Hz, 1H), 2.24 (s, 6H), 2.19-2.14 (m, 1H), 2.13 – 2.08 (m, 1H), 2.06-1.96(m, 3H), 1.94-1.81 (m, 3H), 1.74 (dd, J = 12.0, 4.0 Hz, 1H), 1.66-1.56 (m, 3H), 1.54 – 1.43 (m, 3H), 1.36 (dd, J = 12.0, 8.0 Hz, 3H), 1.28 (d, J = 4.0 Hz, 3H), 1.24 (s, 3H), 1.23 (s, 6H), 1.18-1.14(m, 3H), 1.00 (d, J = 8.0 Hz, 3H), 0.93 (t, J = 8.0 Hz, 3H), 1.23 (s, 6H), 1.027, 96.87, 85.26, 79.32, 77.56, 75.52, 73.68, 73.11, 71.74, 69.56, 69.23, 68.78, 68.24, 64.84, 63.60, 61.86, 43.28, 42.02, 41.69, 40.65, 37.66, 35.73, 33.29, 31.20, 30.76, 30.48, 25.43, 22.29, 20.12, 19.05, 18.96, 18.59, 17.90, 15.31, 13.90.

4''-(4-trifluoromethylcinnamyl)-Spiramycin I (11).

According to the method B, compound 11 could be obtained with 33% yield as white solid using spiramycin I and 4-trifluoromethyl cinnamic acid as substrates. HRMS (ESI) for $C_{53}H_{79}F_3N_2O_{15}$: calculated, $[M+2H]^{2+}/2 = 521.2789$, found 521.2803; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.76 (d, J = 16.0 Hz, 1H), 7.65 (s, 4H), 6.67 (d, J = 16.0 Hz, 1H), 6.2-6.21 (m, 1H), 6.09 - 5.94 (m, 1H), 5.73-5.65 (m, 1H), 5.63-5.50(m, 1H), 5.34-5.25(m, 1H), 5.12(s, 1H), 4.75(d, J = 8.0 Hz, 1H), 4.61 - 4.53(m, 1H), 4.53(m,1H), 4.50 (d, J = 7.4 Hz, 1H), 4.39 (d, J = 8.0 Hz, 1H), 4.09 (dd, J = 28.0, 8.0 Hz, 3H), 3.81 (d, J = 12.0 Hz, 1H), 3.58 - 3.49 (m, 4H), 3.46 - 3.40 (m, 1H), 3.36 - 3.26 (m, 1H)2H), 3.09 (d, J = 8.0 Hz, 1H), 2.80 (dd, J = 16.0, 8.0 Hz, 1H), 2.71 (d, J = 12.0 Hz, 1H), 2.66-2.51 (m, 8H), 2.49 (d, J = 8.0 Hz, 2H), 2.39 (s, 1H), 2.36 – 2.26 (m, 3H), 2.26-2.17 (m, 8H), 2.14 (d, J = 12.0 Hz, 1H), 2.10 – 2.06 (m, 1H), 2.02 (d, J = 12.0 Hz, 1H), 2.00-1.90(m, 2H), 1.87-1.83 (m, 1H), 1.54-1.38(m, 3H), 1.30 (d, J = 4.0 Hz, 3H), 1.28-1.22 (m, 6H), 1.18 (d, J = 4.0 Hz, 6H), 0.99 (d, J = 4.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) § 202.86, 174.27, 166.41, 143.81, 137.69, 132.81, 131.07, 128.32, 125.92, 120.28, 103.91, 100.30, 96.92, 85.26, 79.35, 77.76, 77.24, 75.79, 73.84, 73.08, 71.76, 69.52, 69.23, 68.69, 68.24, 64.84, 63.53, 61.86, 43.25, 42.02, 41.62, 40.69, 37.66, 31.27, 30.73, 25.28, 20.11, 18.99, 18.91, 18.44, 17.85, 15.32.

4''-(4-tert-butylphenylacetyl)-Spiramycin I (12).

According to the method B, compound 12 could be obtained with 10% yield as white solid using spiramycin I and 4-tert-butyl-phenylacetic acid as substrates. HRMS (ESI) for $C_{55}H_{88}N_2O_{15}$: calculated, $[M+2H]^{2+}/2 = 509.3165$, found 509.3182; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.74 (d, J = 16.0 Hz, 1H), 7.51-7.39 (m, 3H), 6.56 (d, J =16.0 Hz, 1H), 6.30-6.18 (m, 1H), 6.07-5.98 (m, 1H), 5.73-5.65 (m, 1H), 5.62-5.52 (m, 1H), 5.33-5.25 (m, 1H), 5.11 (d, *J* = 4.0 Hz, 1H), 4.75 (d, *J* = 8.0 Hz, 1H), 4.59-4.46 (m, 2H), 4.41-4.35 (m, 1H), 4.16-4.11 (m, 1H), 4.10-4.00 (m, 2H), 3.81 (d, J = 8.0 Hz)1H), 3.57 - 3.52 (m, 1H), 3.50 (d, J = 8.0 Hz, 3H), 3.47 - 3.42 (m, 1H), 3.35 - 3.29 (m, 2H), 3.12-3.05 (m, 1H), 2.96 – 2.80 (m, 1H), 2.80 – 2.71 (m, 1H), 2.70-2.64 (m, 1H), 2.54 (s, 6H), 2.50-2.47 (m, 1H), 2.42-2.39 (m, 1H), 2.34 (brs, 1H), 2.28-2.26 (m, 1H), 2.25 (s, 6H), 2.23 – 2.20 (m, 1H), 2.17 – 2.11 (m, 1H), 2.10-2.06 (m, 1H), 2.05-2.03 (m, 1H), 1.98-1.93 (m, 1H), 1.90 (d, J = 4.0 Hz, 1H), 1.88-1.86 (m, 1H), 1.86-1.84 (m, 1H), 1.56-1.45 (m, 3H), 1.33 (s, 9H), 1.32 – 1.29 (m, 3H), 1.26 – 1.23 (m, 6H), 1.17 (s, 3H), 0.99 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.86, 175.99, 174.27, 149.62, 134.71, 132.71, 131.73, 131.24, 129.00, 125.43, 103.85, 100.17, 96.24, 85.23, 79.43, 76.44, 74.44, 73.11, 71.62, 69.66, 69.26, 68.88, 68.22, 66.22, 64.48, 61.84, 43.38, 42.01, 41.33, 40.89, 40.22, 37.65, 34.43, 31.86, 31.37, 30.91, 30.78, 30.46, 25.39, 20.11, 19.23, 19.15, 19.10, 18.27, 15.32.

4''-(N-(4-tert-butylbenzoyl)-N-(propargyl)-aminoacetyl)-Spiramycin I (13).

According to the method B, compound 13 could be obtained with 50% yield as white solid using spiramycin I and N-(4-tert-butylbenzoyl)-N-(propargyl)-aminoacetic acid as substrates. HRMS (ESI) for $C_{59}H_{91}N_3O_{16}$: calculated, $[M+2H]^{2+}/2 = 549.8273$, found 549.8283; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.54 – 7.33 (m, 4H), 6.28-6.21 (m, 1H), 6.08 – 5.96 (m, 1H), 5.73-5.65 (m, 1H), 5.61-5.50 (m, 1H), 5.35-5.23 (m, 1H), 5.12-5.05 (m, 1H), 4.73-4.59 (m, 1H), 4.54-4.46 (s, 2H), 4.43 (s, 1H), 4.41-4.32 (m, 2H), 4.30-4.16 (m, 2H), 4.25-4.11 (m, 1H), 4.08-4.12 (m, 2H), 3.80 (d, J = 12.0 Hz, 1H), 3.61 - 3.48 (m, 4H), 3.47 - 3.40 (m, 1H), 3.33 - 3.24 (m, 2H), 3.08 (d, J = 8.0 Hz, 1H), 2.98-2.79 (m, 1H), 2.78 – 2.61 (m, 2H), 2.60-2.40 (m, 9H), 2.37 (s, 1H), 2.35-2.27 (m, 3H), 2.24 (s, 6 H), 2.14 (d, J = 12.0 Hz, 1H), 2.08 (d, J = 12.0 Hz, 1H), 2.01 (s, 1H), 1.90-1.83 (m, 3H), 1.53 – 1.42 (m, 3H), 1.32 (s, 6H), 1.30 (d, J = 4.0Hz, 9H), 1.20 (d, J = 20.0 Hz, 9H), 0.99 (d, J = 4.0 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 202.87, 174.27, 134.71, 132.77, 131.14, 128.46, 127.20, 125.51, 124.83, 103.86, 100.24, 96.77, 85.25, 79.31, 75.63, 73.56, 73.04, 71.71, 69.55, 69.28, 69.24, 68.68, 68.23, 64.87, 61.85, 43.29, 42.02, 41.59, 40.64, 37.64, 34.88, 31.17, 30.75, 30.46, 29.70, 20.11, 19.09, 18.91, 15.31.

4''-(N-(4-trifluoromethylbenzoyl)-N-(propargyl)-aminoacetyl)-Spiramycin I (14).

According to the method B, compound 14 could be obtained with 21% yield as white solid using spiramycin I and N-(4-trifluoromethylbenzoyl)-N-(propargyl)-aminoacetic acid as substrates. HRMS (ESI) for $C_{56}H_{82}F_3N_3O_{16}$: calculated, $[M+H]^+ = 1110.5720$, found 1110.5704; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.74 – 7.56 (m, 4H), 6.30-6.22 (m, 1H), 6.11 – 5.93 (m, 1H), 5.73-5.65 (m, 1H), 5.61-5.53 (m, 1H), 5.30 – 5.24 (m, 1H), 5.10-5.06(m, 1H), 4.70-4.55 (m, 1H), 4.51-4.45 (m, 2H), 4.44 – 4.35 (m, 2H), 4.15 - 4.05 (m, 4H), 3.81 (d, J = 8.0 Hz, 1H), 3.58 - 3.52 (m, 1H), 3.50 (s, 3H), 3.45 - 3.40 (m, 1H), 3.36-3.27(m, 2H), 3.25-3.11 (m, 1H), 3.08(d, J = 4.0 Hz, 1H), 2.96-2.78 (m, 1H), 2.78 – 2.54 (m, 3H), 2.49 (s, 6H), 2.46-2.45 (m, 1H), 2.41-2.37 (m, 1H), 2.3-2.26 (m, 3H), 2.22 (s, 6H), 2.21-2.18 (m, 1H), 2.17-2.12 (m, 1H), 2.07 (d, J = 12.0 Hz, 1H), 2.03-1.96 (d, J = 12.0 Hz, 1H), 1.905-1.85(m, 2H), 1.84-1.82 (m, 1H), 1.53-1.41 (m, 3H), 1.30 (d, J = 8.0 Hz, 6H), 1.24 - 1.17 (m, 9H), 0.99 (d, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.84, 174.27, 134.68, 132.82, 131.06, 128.54, 127.65, 125.74, 103.89, 100.30, 96.77, 85.27, 79.34, 77.43, 77.24, 77.03, 76.72, 75.66, 73.88, 73.05, 71.76, 69.23, 68.23, 64.85, 63.31, 61.85, 53.44, 46.34, 43.22, 42.02, 40.72, 37.64, 31.29, 30.72, 30.50, 25.40, 20.11, 18.97, 18.91, 18.38, 17.87, 15.32.

4''-(N-(4-trifluoromethylbenzyl)-N-(propargyl)-aminoacetyl)-Spiramycin I (15).

According to the method B, compound 15 could be obtained with 24% yield as white solid using spiramycin I and N-(4-trifluoromethylbenzyl)-N-(propargyl)-aminoacetic acid as substrates. HRMS (ESI) for $C_{56}H_{84}F_3N_3O_{15}$: calculated, $[M+2H]^{2+/2} =$ 548.8000, found 548.8023; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.55 (dd, J =18.8, 8.4 Hz, 4H), 6.24 (dd, *J* = 15.2, 10.4 Hz, 1H), 6.01 (dd, *J* = 15.2, 10.8 Hz, 1H), 5.68 (dd, J = 15.2, 9.6 Hz, 1H), 5.53-5.60 (m, 1H), 5.33 – 5.26 (m, 1H), 5.08 (d, J = 3.2 Hz, 1H), 4.66 (d, J = 10.0 Hz, 1H), 4.49 (d, J = 7.6 Hz, 1H), 4.43-4.47 (m, 1H), 4.41 -4.37 (m, 1H), 4.11 (d, J = 8.8 Hz, 1H), 4.04 (dd, J = 9.6, 4.0 Hz, 1H), 3.83 (s, 2H), 3.80 (d, J = 10.8 Hz, 1H), 3.58 (s, 1H), 3.52 - 3.54 (m, 1H), 3.50 (s, 3H), 3.48 - 3.49 (m, 1H), 3.50 (s, 2H), 3.48 - 3.49 (m, 2H)2H), 3.25 – 3.30 (m, 2H), 3.07 (d, J = 8.8 Hz, 1H), 2.83 – 2.74 (m, 1H), 2.68 (dd, J = 14.4, 10.8 Hz, 1H), 2.50 (s, 6H), 2.45 – 2.48 (m, 1H), 2.37 (s, 1H), 2.33 (s, 1H), 2.30 (s, 6H), 2.26 – 2.28 (m, 2H), 2.20 – 2.24 (m, 1H), 2.10 (dd, *J* = 24.8, 11.2 Hz, 1H), 2.04 - 1.98 (m, 1H), 1.82-1.93 (m, 4H), 1.54 - 1.44 (m, 3H), 1.33 - 1.25 (m, 9H), 1.23 (d, J = 5.6 Hz, 3H), 1.15 - 1.10 (m, 6H), 1.02 - 0.92 (m, 1H), 0.98(d, 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.84, 174.28, 170.66, 142.06, 142.04, 134.74, 132.74, 131.20, 129.31(4C), 128.44, 125.38, 125.35, 103.85, 100.21, 96.87, 85.25, 79.38, 79.03, 77.96, 77.72, 77.23, 75.77, 73.93, 73.32, 73.04, 71.70, 69.30, 69.23, 68.70, 68.23, 64.84, 63.31, 61.86, 57.04, 54.01, 43.35, 42.19, 42.02, 41.99, 41.61, 37.63, 31.05, 30.79, 30.48, 25.37, 20.11, 19.16, 18.90, 17.84, 15.31.

4''-(butylaminoformyl)-Spiramycin I (16).

According to the method C, compound 16 could be obtained with 13% yield as white solid using spiramycin I and butyl isocyanate as substrates. HRMS (ESI) for $C_{48}H_{83}N_3O_{15}$: calculated, $[M+2H]^{2+}/2 = 471.7985$, found 471.8002; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 6.25 (dd, J = 15.2, 10.4 Hz, 1H), 6.02 (dd, J = 14.8, 10.4 Hz, 1H), 5.69 (dd, J = 15.2, 9.6 Hz, 1H), 5.54 – 5.60 (m, 1H), 5.27 – 5.31 (m, 1H), 5.07 $(d, J = 3.2 \text{ Hz}, 1\text{H}), 4.48 (d, J = 7.6 \text{ Hz}, 1\text{H}), 4.38 (d, J = 9.2 \text{ Hz}, 1\text{H}), 4.14 - 4.01 (m, J = 0.2 \text{ Hz}, 1\text{Hz}), 4.14 - 4.01 (m, J = 0.2 \text{ Hz}, 1\text{Hz}), 4.14 - 4.01 (m, J = 0.2 \text{ H$ 4H), 3.80 (d, J = 10.8 Hz, 1H), 3.51 - 3.56 (m, 1H), 3.50 (s, 3H), 3.40 - 3.47 (m, 1H), 3.28 - 3.31 (m, 3H), 3.24 - 3.26 (m, 1H), 3.07 (d, J = 8.8 Hz, 1H), 2.94 (d, J = 10.0 Hz, 1H), 2.79 (dd, J = 16.4, 9.6 Hz, 1H), 2.68 (dd, J = 14.4, 10.8 Hz, 2H), 2.49 (s, 7H), 2.23 (s, 6H), 2.16 - 2.08 (m, 1H), 2.03 (d, J = 14.4 Hz, 2H), 1.91 - 1.97 (m, 1H), 1.80 - 1.89(m, 3H), 1.77 (d, J = 4.0 Hz, 1H), 1.73 (d, J = 4.0 Hz, 1H), 1.57 - 1.64 (m, 3H), 1.54 - 1.641.46 (m, 2H), 1.45 – 1.38 (m, 3H), 1.29 – 1.31 (m, 5H), 1.23 – 1.25 (m, 10H), 0.99 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H), 0.92 – 0.96 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) § 202.84, 174.26, 136.00, 134.69, 132.80, 131.09, 129.06, 128.51, 103.89, 100.27, 96.39, 85.27, 79.33, 78.78, 77.24, 76.42, 74.82, 73.77, 73.14, 71.79, 69.46, 69.23, 68.77, 68.23, 66.07, 64.87, 61.85, 43.25, 42.68, 42.02, 40.88, 40.70, 37.65, 33.29, 31.74, 31.24, 30.73, 30.48, 25.41, 20.11, 19.69, 19.09, 19.01, 18.48, 18.29, 15.31, 13.40.

4"-cyclohexylaminoformyl-Spiramycin I (17).

According to the method C, compound 17 could be obtained with 13% yield as white solid using spiramycin I and cyclohexyl isocyanate as substrates. HRMS (ESI) for $C_{50}H_{85}N_3O_{15}$: calculated, $[M+2H]^{2+}/2 = 484.8063$, found 484.8038; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 6.25 (dd, J = 15.2, 10.8 Hz, 1H), 6.02 (dd, J = 15.2, 10.8 Hz, 1H), 5.68 (dd, *J* = 15.2, 9.6 Hz, 1H), 5.60 – 5.53 (m, 1H), 5.33 – 5.25 (m, 1H), 5.07 (d, J = 2.8 Hz, 1H), 4.47 (d, J = 7.6 Hz, 1H), 4.38 (d, J = 8.0 Hz, 1H), 4.11 - 4.03 (m, J = 2.8 Hz, 1H), 4.47 (d, J = 7.6 Hz, 1H), 4.38 (d, J = 8.0 Hz, 1H), 4.11 - 4.03 (m, J = 2.8 Hz, 1Hz), 4.11 - 4.03 (m, J = 2.8 Hz, 1Hz), 4.11 - 4.03 (m, J = 2.8 Hz, 1Hz), 4.11 - 4.03 (m, J = 2.8 Hz), 4.11 - 44H), 3.80 (d, *J* = 10.8 Hz, 1H), 3.55 – 3.52 (m, 2H), 3.50 (s, 3H), 3.46 – 3.38 (m, 2H), 3.32 - 3.22 (m, 2H), 3.07 (d, J = 8.8 Hz, 1H), 2.94 (d, J = 10.0 Hz, 1H), 2.79 (dd, J = 10.0 Hz, 1H), 2.79 (d 13.6, 10.0 Hz, 2H), 2.68 (dd, J = 14.8, 11.2 Hz, 2H), 2.54 – 2.42 (m, 7H), 2.40 – 2.25 (m, 3H), 2.21 (s, 6H), 2.10 (d, J = 13.6 Hz, 2H), 2.03 (d, J = 14.4 Hz, 2H), 1.98 – 1.80 (m, 5H), 1.76 (d, J = 3.6 Hz, 1H), 1.74 – 1.68 (m, 3H), 1.53 – 1.43 (m, 5H), 1.35 – 1.26 (m, 6H), 1.26 - 1.18 (m, 9H), 0.99 (t, J = 6.3 Hz, 4H).¹³C NMR (101 MHz, CDCl₃) δ 202.88, 174.21, 134.66, 132.78, 131.06, 128.49, 103.88, 100.24, 96.37, 85.24, 79.25, 78.75, 77.28, 76.40, 74.85, 73.82, 73.10, 71.76, 69.45, 69.22, 68.73, 68.21, 66.01, 64.82, 61.82, 53.33, 43.20, 41.97, 40.86, 40.68, 37.67, 34.76, 31.71, 31.25, 30.70, 30.46, 25.38, 25.19, 23.76, 20.10, 19.06, 18.97, 18.40, 18.26, 15.29.

4''-(4-methoxyphenylaminoformyl)-Spiramycin I (18).

According to the method C, compound 18 could be obtained with 21% yield as white solid using spiramycin I and 4-methoxyphenyl isocyanate as substrates. HRMS (ESI) for $C_{51}H_{81}N_3O_{15}$: calculated, $[M+H]^+ = 992.5690$, found 992.5684; ¹H NMR (400 MHz, $CDCl_3$) δ 9.85 (s, 1H), 7.32 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 6.41 (s, 1H), 6.24 (dd, J = 14.8, 10.4 Hz, 1H), 6.03 - 5.93 (m, 1H), 5.65 (dd, J = 15.6, 9.6 Hz, 1H),5.61 - 5.51 (m, 1H), 5.36 - 5.23 (m, 1H), 5.10 (d, J = 3.2 Hz, 1H), 5.00 - 4.93 (m, 1H), 4.73 (d, J = 7.6 Hz, 1H), 4.44 (d, J = 6.0 Hz, 1H), 4.14 (d, J = 8.0 Hz, 1H), 4.08 – 4.03 (m, 2H), 3.82 (s, 3H), 3.77 (d, J = 11.2 Hz, 1H), 3.59 – 3.51 (m, 2H), 3.48 (s, 2H), 3.39 -3.29 (m, 3H), 2.99 (dd, J = 14.8, 9.2 Hz, 3H), 2.84 (dd, J = 18.0, 8.4 Hz, 2H), 2.74 -2.61 (m, 3H), 2.47 (s, 3H), 2.39 - 2.27 (m, 2H), 2.25 - 2.13 (m, 1H), 2.13 - 2.00 (m, 4H), 1.93 (s, 3H), 1.79 (dd, *J* = 14.4, 3.6 Hz, 2H), 1.59 (dd, *J* = 13.6, 7.6 Hz, 4H), 1.38 (s, 4H), 1.35 - 1.29 (m, 9H), 1.27 (d, J = 5.6 Hz, 6H), 1.06 - 0.96 (m, 4H), 0.89 (t, J = 5.6 Hz, 6H), 1.06 - 0.96 (m, 4H), 0.89 (t, J = 5.6 Hz, 6H), 0.89 (t, J = 5.6 Hz, 012.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.90, 174.26, 170.09, 163.22, 134.71, 132.75, 131.96, 131.16, 128.45, 123.62, 113.49, 103.87, 100.23, 96.31, 85.24, 79.33, 78.97, 76.43, 74.66, 73.49, 73.12, 71.73, 69.60, 69.24, 68.79, 68.22, 66.12, 64.68, 61.85, 55.42, 43.29, 42.00, 40.88, 40.45, 37.66, 31.79, 31.10, 30.75, 30.45, 25.38, 20.11, 19.11, 18.87, 18.28, 15.31.

4''-(4-methyl-phenylaminoformyl)-Spiramycin I (19).

According to the method C, compound 19 could be obtained with 18% yield as white solid using spiramycin I and 4-methyl phenyl isocyanate as substrates. HRMS (ESI) for $C_{51}H_{81}N_3O_{15}$: calculated, $[M+H]^+ = 976.5740$, found 976.5748; ¹H NMR (400 MHz, $CDCl_3$) δ 9.82 (s, 1H), 7.29 (d, J = 7.6 Hz, 2H), 7.10 (d, J = 7.6 Hz, 2H), 6.94 (s, 1H), 6.24 (dd, *J* = 14.8, 10.4 Hz, 1H), 6.01 (dd, *J* = 14.0, 11.2 Hz, 1H), 5.68 (dd, *J* = 14.8, 9.6 Hz, 1H), 5.62 - 5.48 (m, 1H), 5.28 (s, 1H), 5.09 (s, 1H), 4.54 (d, J = 10.0 Hz, 1H), 4.48 (d, J = 7.2 Hz, 1H), 4.37 (d, J = 8.0 Hz, 1H), 4.11 (d, J = 8.4 Hz, 1H), 4.05 (d, J = 9.2 Hz, 2H), 3.80 (d, J = 10.8 Hz, 1H), 3.55 - 3.48 (m, 4H), 3.45 - 3.36 (m, 2H), 3.29(d, J = 6.8 Hz, 2H), 3.07 (d, J = 8.4 Hz, 1H), 3.00 - 2.90 (m, 1H), 2.79 (dd, J = 17.2)9.2 Hz, 1H), 2.72 – 2.63 (m, 1H), 2.52 (s, 5H), 2.48 – 2.43 (d, J = 19.0 Hz, 3H), 2.29 (s, 3H), 2.21 (s, 6H), 2.10 (d, *J* = 12.8 Hz, 1H), 2.03 (d, *J* = 14.4 Hz, 2H), 1.93 (s, 1H), 1.87 - 1.87 (m, 3H), 1.54 - 1.37 (m, 3H), 1.29 (d, J = 6.0 Hz, 6H), 1.22 (d, J = 7.3Hz, 9H), 0.98 (d, J = 6.2 Hz, 4H), 0.86 (d, J = 7.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.97, 174.27, 171.64, 143.98, 134.73, 132.65, 131.32, 130.14, 129.10, 128.37, 127.59, 103.80, 100.17, 96.11, 85.19, 79.46, 76.46, 74.14, 73.08, 72.64, 71.48, 69.98, 69.27, 68.98, 68.24, 66.37, 64.23, 61.84, 43.46, 41.99, 40.93, 39.93, 37.65, 31.96, 30.71, 30.45, 25.35, 21.72, 20.10, 19.81, 19.24, 19.13, 18.26, 15.33.

4''-(4-methoxyphenylaminoformyl)-Spiramycin I (20).

According to the method C, compound 20 could be obtained with 13% yield as white solid using spiramycin I and 4-trifluoromethyl phenyl isocyanate as substrates. HRMS (ESI) for $C_{51}H_{78}F_3N_3O_{15}$: calculated, $[M+H]^+ = 1030.5458$, found 1030.5465; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.26 (dd, *J* = 15.2, 10.8 Hz, 1H), 6.03 (dd, *J* = 14.8, 10.8 Hz, 1H), 5.70 (dd, *J* = 15.2, 9.6 Hz, 1H), 5.54 - 5.61 (m, 1H), 5.28 - 5.33 (m, 1H), 5.09 (d, J = 3.2 Hz, 1H), 4.49(d, J = 7.6 Hz, 1H), 4.42 - 4.37 (m, 1H), 4.12 (d, J = 8.4 Hz, 1H), 4.11 - 4.03 (m, 3H),3.82 (d, J = 10.8 Hz, 1H), 3.58 - 3.52 (m, 2H), 3.52 (s, 3H), 3.41 - 3.48 (m, 1H), 3.27-3.30 (m, 2H), 3.09 (d, J = 8.4 Hz, 1H), 2.96 (d, J = 9.6 Hz, 1H), 2.85 - 2.77 (m, 1H), 2.70 (dd, J = 14.8, 11.2 Hz, 2H), 2.50 (s, 6H), 2.24 (s, 6H), 2.07 – 2.16 (m, 2H), 2.05 (d, J = 14.4 Hz, 2H), 1.92 - 1.99 (m, 1H), 1.89 - 1.83 (m, 2H), 1.77 (dd, J = 14.4, 3.6)Hz, 1H), 1.56 – 1.41 (m, 4H), 1.30 – 1.99(m, 7H), 1.24 – 1.26(m, 10H), 1.0(d, J = 6.4 Hz, 3H), 1.03 – 0.96 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.87, 174.23, 152.44, 142.17, 134.78, 132.70, 131.24, 128.36, 126.16 (t, *J* = 7.2, 3.4 Hz), 125.67 (t, *J* = 127.4, 32.7 Hz), 118.63 (2C), 114.16, 103.85, 100.36, 96.33, 85.25, 79.28, 79.09, 77.26, 76.44, 74.73, 73.98, 73.11, 71.71, 69.55, 69.28, 68.75, 68.28, 66.02, 64.84, 61.87, 43.34, 41.94 (2C), 40.78 (2C), 37.67, 31.91, 31.29, 30.67, 30.49, 25.40, 20.09, 19.08, 18.99, 18.40, 18.28, 15.39.

4"-isovalerylspiramycin I from carrimycin

Figure S1. The HPLC, HR-ESI-MS and NMRs studies of 4"-isovalerylspiramycin I and compound 1 from carrimycin and synthesis, respectively.

Figure S2. Key ¹H-¹H COSY and HMBC correlations of compounds 9a and 9b.

The 1D NMR data of **9a** were almost identical to those of **9b**. The main difference between them was that the 4-(*tert*-butyl)benzoyl was bonded to the 4''-OH of **9a** and the 3-OH of **9b**, respectively. The structures of **9a** and **9b** could be verified by detailed analysis of their ¹H-¹H COSY, HSQC and HMBC correlations (**Figure S3** and **S4**). The 4-(*tert*-butyl)benzoyl moiety of **9a** and **9b** were clearly assigned by the key HMBC correlations from H-3'''' to C-1'''', C-5'''' and C-7''''; H-4'''' to C-2'''', C-6'''' and C-8''''; H-9'''' (or H-10'''', H-11''') to C-5'''' and C-8''''. In the HMBC spectrum of **9a**, the correlation between H-4'' ($\delta_{\rm H}$ 4.82) and C-1'''' ($\delta_{\rm C}$ 166.4) supported that C-1'''' was attached to C-4'' via an ether bridge. Similarly, according to the HMBC correlation, H-3 ($\delta_{\rm H}$ 5.40) of **9b** was bonded to C-1'''' ($\delta_{\rm C}$ 166.3). Therefore, the structures of **9a** and **9b** were finally identified as shown in **Figure S3**.

Figure S3. 1D and 2D NMR spectra of compound 9a.

Figure S4. 1D and 2D NMR spectra of compound 9b.

Figure S5. HPLC analysis of compounds **9a**, **9b**, **10a** and **10b**. The analysis was performed on C18YE column (4.6 mm \times 250 mm) with a UV detection wavelength of 230 nm; the mobile phase consisted of (A) acetonitrile and (B) 0.1% formic acid in water (v/v); the flow rate was 0.6 mL/min at 25°C.

Figure S6. The effect of **14** on HGC-27 mitochondrion. (A) Flow cytometry and (B)bar graph analysis of mitochondrial membrane potential, (C) Western blot images and (D) bar graph analysis of Bax, and Bcl-2 protein expressions in HGC-27 after treatment with 14 (0, 0.10, 0.45, 0.90 μ M) for 24 h.

		R	MIC [µM]		R	MIC [µM]
	1		4-16	2		2-8
_N.,O	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-16	4		4-16
	5		4-32	6	\mathbb{N}	2-16
e.u Ho N-	9a	$\stackrel{\scriptstyle \bigcirc \scriptstyle \leftarrow}{\longrightarrow}$	4->128	10a	nBu of	4-32
	10b	nBu Off	2-16	11	F3C	4->128
	12	$\succ = 1 \times 10^{-10}$	4-16	13	Ru O O	4-32
Spiramycin Spiramycin	14	F3C	4-16	16	~~ [₽] Å	1-8
	17		8-64	20	F ₃ C-	2-32

Figure S7. Antibacterial SAR of spiramycin I derivatives.

Compound 10a

Compound 10b

Figure S8. ¹H and ¹³C NMR spectra of compounds 2-8, 10-20.

Chemical Formula: C₅₀H₈₄N₂O₁₅ Exact Mass: 952.5872

Figure S9. HRMS-ESI spectra of compounds 2-20.