A new Schiff-base 2-benzoylpyridine Complex Copper on boehmite nanoparticles as

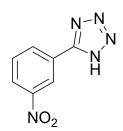
a recoverable catalyst for the homoselective synthesis of 5-substituted tetrazoles

Elham Mohseni¹, Arash Ghorbani-Choghamarani^{*2}, Bahman Tahmasbi^{*1}, Masoomeh

Norouzi¹

¹Department of Chemistry, Faculty of Science, Ilam University, P. O. Box 69315516, Ilam,

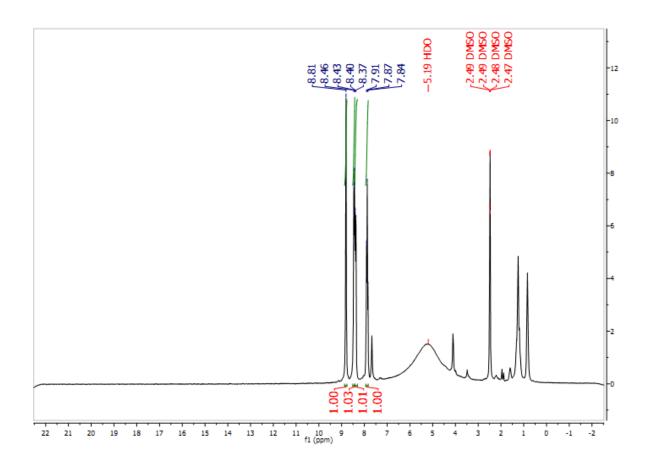
Iran.

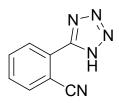

²Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran. E-mail: b.tahmasbi@ilam.ac.ir, a.ghorbani@basu.ac.ir

Abstract

In this research, boehmite nanoparticles (B-NPs) were prepared by a simple progress and then its surface was modified by 3-aminopropyl)triethoxysilane (3-APTES). The modified B-NPs (3-APTES@B-NPs) were functionalized by 2-benzoylpyridine Schiff-base ligand toward immobilization of Schiff-base 2-benzoylpyridine ligand on the 3-APTES@B-NPs's surface (2BP-Schiff-base@B-NPs). Finally, copper ions were coordinated with supported Schiff-base ligand on B-NPs toward formation of final catalyst (Cu-2BP-Schiff-base@B-NPs). The prepared Cu-2BP-Schiff-base@B-NPs was characterized by FT-IR, BET, XRD, SEM, AAS, TGA, EDX and mapping. In the next part, Cu-2BP-Schiff-base@B-NPs was applied as a homoselective and recyclable catalyst for the synthesis of a diverse range of 5-substituted tetrazoles in PEG-400 as a green solvent. The main benefits of this protocol are high homoselectivity attribute, short reaction times, high product yields and TOF values, and more addition the catalyst's ability to be recycled at least four times without significant losing catalytic efficiency.

Keywords: Schiff-base ligand, copper complex; boehmite nanoparticles, homoselective catalyst, 5-substituted tetrazoles

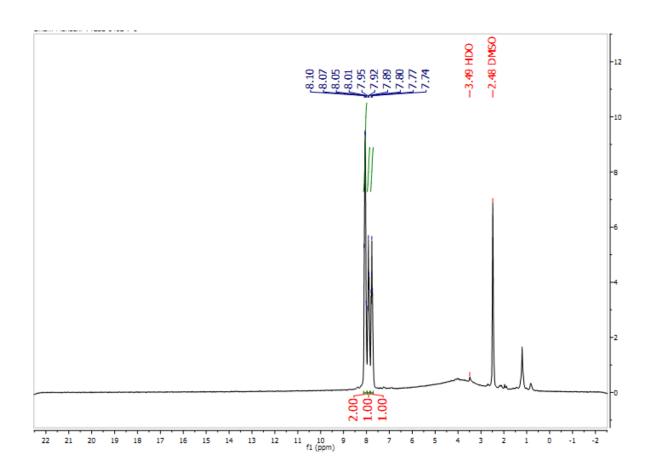

¹H NMR spectral data

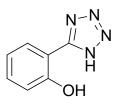


5-(3-nitrophenyl)-1H-tetrazole

¹H NMR (400 MHz, DMSO-d6): δ_{H} = 8.81 (s, 1H), 8.46-8.43 (d, *J*= 12 Hz, 1H), 8.40-8.37 (d,

J= 12 Hz, 1H), 7.91-7.84 (t, *J*= 12 Hz, 1H) ppm.

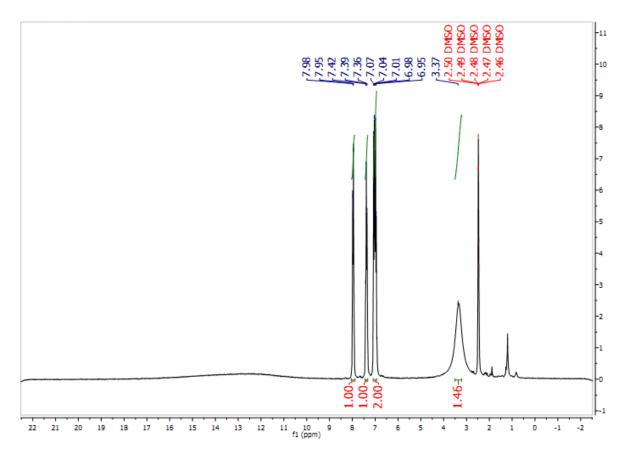


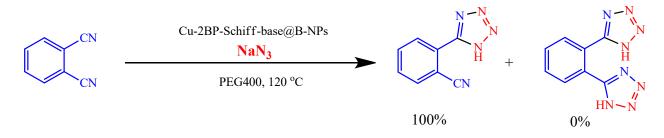


2-(1H-tetrazol-5-yl)benzonitrile

¹H NMR (400 MHz, DMSO-d6): δ_{H} = 8.10-8.05 (m, 2H), 7.95-7.89 (t, *J*= 12 Hz, 1H), 7.80-

7.74 (t, *J*= 12 Hz, 1H) ppm.





2-(1H-tetrazol-5-yl)phenol

¹H NMR (400 MHz, DMSO-d6): δ_{H} = 7.98-7.95 (d, *J*= 12 Hz, 1H), 7.42-7.36 (t, *J*= 12 Hz,

1H), 7.07-6.95 (m, 2H), 3.37 (br, 1H) ppm.

Scheme S1. Homoselectivity of Cu-2BP-Schiff-base@B-NPs in the synthesis of tetrazoles.

reaction of synthesis of 5-phenyl-1H-tetrazole.				
Entry	Catalyst	Time (h)	Yield (%)	Reference
1	CoY Zeolite	14	95	1
2	Cu–Zn alloy nanopowder	10	94	2
3	$B(C_6F_5)_3$	8	95	3
4	Fe ₃ O ₄ @SiO ₂ /Salen Cu(II)	7	81.1	4
5	Fe ₃ O ₄ /ZnS HNSs	24	86	5
6	Mesoporous ZnS	36	98	6
7	CuFe ₂ O ₄	12	90	7
8	Nano ZnO/Co ₃ O ₄	12	98	8
9	Fe ₃ O ₄ @boehmite NPs	4	97	9
10	Ni-MP(AMP) ₂ @Fe-biochar	4	97	10
11	Cu-2BP-Schiff-base@B-NPs	2	95	This work

Table S1. Comparison of catalytic efficiency of Cu-2BP-Schiff-base@B-NPs in the model reaction of synthesis of 5-phenyl-1H-tetrazole

^aIsolated yield

References

- 1. V. Rama, K. Kanagaraj and K. Pitchumani, *The Journal of Organic Chemistry*, 2011, 76, 9090-9095.
- 2. G. Aridoss and K. K. Laali, *Journal*, 2011.
- 3. S. K. Prajapti, A. Nagarsenkar and B. N. Babu, *Tetrahedron Letters*, 2014, 55, 3507-3510.
- 4. F. Dehghani, A. R. Sardarian and M. Esmaeilpour, *Journal of Organometallic Chemistry*, 2013, 743, 87-96.
- 5. G. Qi, W. Liu and Z. Bei, Chinese Journal of Chemistry, 2011, 29, 131-134.
- 6. L. Lang, H. Zhou, M. Xue, X. Wang and Z. Xu, *Materials Letters*, 2013, 106, 443-446.
- 7. B. Sreedhar, A. S. Kumar and D. Yada, *Tetrahedron letters*, 2011, **52**, 3565-3569.
- 8. S. M. Agawane and J. M. Nagarkar, *Catalysis Science & Technology*, 2012, **2**, 1324-1327.

- 9. P. Moradi, *RSC advances*, 2022, **12**, 33459-33468.
- 10. P. Moradi and M. Hajjami, New Journal of Chemistry, 2021, 45, 2981-2994.