Supplementary Information

2H-SnS₂ assembled with petaloid 1T@2H-MoS₂ nanosheets heterostructures for room temperature NO₂ gas sensing

Shraddha Hambir^{a,e}, Shashikant Shinde^b, H. M. Pathan^a, Som Datta Kaushik^c, Chandra

Sekhar Rout^d Shweta Jagtap^{e*}

^aDepartment of Physics, Savitribai Phule Pune University, India

^bMES's Department of Physics, Nowrosjee Wadia College, Pune 411001, India

°UGC-DAE Consortium for Scientific Research Mumbai Centre, BARC, Mumbai, India

^dCentre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Ramanagaram, Bangalore, India

^eDepartment of Electronic and Instrumentation Science, Savitribai Phule Pune University,

India

Corresponding author: - <u>*shweta.jagtap@gmail.com</u>

2. Experimental

2.4 Gas sensor fabrication and gas sensing measurement

Figure S1. Optical images of Sensing device a) bare electrode, b) with material deposition

X-ray Diffraction

Figure S1 shows diffraction peaks at 15.92°, 29.12°, 33.03°, 47.48°, 50.62°, and 53.34°, which correspond to the (001), (100), (101), (102), (110), and (111) planes of 2T-type hexagonal berndite SnS₂ (JCPDS, No. 23-0677)¹

Figure S2. XRD pattern of SnS₂

Raman analysis –

The presence of $2H-SnS_2$ was confirmed using non-destructive Raman spectroscopy in figure S2. Both $2H-SnS_2$ and $4H-SnS_2$ nanosheets exhibit a characteristic peak around 315 cm^{-1} . SnS_2 samples display an intense peak at approximately 313 cm^{-1} , attributed to the A_{1g} mode, which involves the out-of-plane stretching of sulfur atoms in SnS_2 . Additionally, for the $4H-SnS_2$ crystal, two weak E-mode peaks are observed at 200 cm⁻¹ and 214 cm⁻¹. In contrast, the $2H-SnS_2$ crystal features a weak E_g mode at 205 cm^{-1} , which differentiates it from the $4H-SnS_2$. The presence of several additional modes in the Raman spectrum of $4H-SnS_2$ further supports the confirmation of the 2H polytype SnS_2 formation²⁻⁴.

Figure S3. Raman spectra of 2H-SnS₂

FESEM

The FESEM image of pristine SnS_2 in figure S4 showed highly agglomerated nanoparticles they are densely packed and compact.

Figure S4. FESEM images of pure SnS₂

Figure S5. EIS spectra of SnS₂

Figure S6. Equivalent Circuit for a) $1T@2H-MoS_2$ and $1T@2H-MoS_2/SnS_2$ and b) SnS_2

References:

- 1 Z. Zhang, J. Huang, M. Zhang, Q. Yuan and B. Dong, *Appl Catal B*, 2015, **163**, 298–305.
- 2 Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson and P. Sutter, ACS Nano, 2014, 8, 10743–10755.
- 3 T. Sriv, K. Kim and H. Cheong, 2018, **8**, 10194.
- 4 L. Wang, X. Li, C. Pei, C. Wei, J. Dai, ... X. H.-C. C. and undefined 2022, *ElsevierL Wang, X Li, C Pei, C Wei, J Dai, X Huang, H LiChinese Chemical Letters, 2022*•*Elsevier.*