Supplementary Information

In-Situ Growth of CaMoO₄ on Electropolymerized PANI as Hybrid Electrocatalyst for

Enhanced Oxygen Evolution

Nitika Garg,^a Ashok K. Ganguli^{a,b*}

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi

110016, India

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Ganjam, Odisha-760003

Fig. S1: Digital picture of electrodeposited PANI electrode.

Fig. S2: PXRD pattern of bare nickel foam substrate.

CaMoO₄/PANI/NF

Fig. S3: EDS analysis of (a) and (b) PANI, (c) and (d) CaMoO₄, and (e) and (f) CaMoO₄/PANI.

Fig. S4: TEM images of (a), (b) and (c) PANI, (d), (e) and (f) CaMoO₄, and (g), (h) and (i) CaMoO₄/PANI at different magnification.

Fig. S5: (a) Tafel slope obtained from the polarization curves obtained using LSV measurements. (b) Nyquist plots.

Fig. S6: (a) LSV curve and (b) Nyquist plot for comparison between binder-free $CaMoO_4$ electrode and $CaMoO_4$ electrode loaded on nickel foam using Nafion as binder.

Fig. S7: LSV curves to compare OER activity of synthesized catalyst with noble metal catalyst (RuO₂).

Fig. S8: Nyquist plots after circuit fitting (a) PANI, (b) CaMoO₄ and (c) CaMoO₄/PANI.

Fig. S9: (a) Bode plot (|Z| versus modulation frequency) and (b) Bode plot (ϕ versus modulation frequency) of PANI, CaMoO₄, and CaMoO₄/PANI.

Fig. S10: CV curves for ECSA analysis in non-faradaic region of PANI, CaMoO₄, and CaMoO₄/PANI.

Fig. S11: ECSA corrected LSV curves of PANI, CaMoO₄ and CaMoO₄/PANI.

Fig. S12: SEM and TEM images after catalysis (a), (b) and (c) PANI, (d), (e) and (f) CaMoO₄ and (g), (h) and (i) CaMoO₄/PANI.

Fig. S13: Nyquist plot of CaMoO₄/PANI before and after catalysis

Table 1: OER electrocatalytic activity of PANI based previously reported catalysts in alkaline media

Catalyst	Substrate	<i>j</i> (mAcm ⁻²)	η (mV)	References
CaMoO ₄ /PANI	NF	10	233	This work
CaMoO ₄	NF	50	345	1
NiO/MnO ₂ @PAN	PG (pyrolytic	10	345	2
Ι	graphite			
	electrode)			
PANI@Co-Fe	GC (glassy	10	261	3
LDHs	carbon			
	electrode)			
Co ₄ Ni ₁ @PANI	NF	10	288	4
CoFe ₂ O ₄ /PANI-	GC	10	314	5
MWCNTs				
NiFeLDH@PANi-	CF	100	380	6
CF				
PANI@NiO	NF	10	301	7
PANI coated	NF	100	290	8
Ni ₃ Mo ₂ P-MoO ₃				
CoMoS-PANI	NF	10	250	9

References:

- 1 Y. Gou, Q. Liu, X. Shi, A. M. Asiri, J. Hu and X. Sun, *Chem Commun.*, 2018, **54**, 5066–5069.
- J. He, M. Wang, W. Wang, R. Miao, W. Zhong, S.-Y. Chen, S. Poges, T. Jafari, W. Song,
 J. Liu and S. L. Suib, ACS Appl. Mater. Interfaces, 2017, 9, 42676–42687.
- 3 X. Sun, X. Liu, R. Liu, X. Sun, A. Li and W. Li, *Catal. Commun.*, 2020, **133**, 105826.
- 4 V. Ashok, S. Mathi, M. Sangamithirai and J. Jayabharathi, *Energy & Fuels*, 2022, **36**, 14349–14360.
- Y. Liu, J. Li, F. Li, W. Li, H. Yang, X. Zhang, Y. Liu and J. Ma, J. Mater. Chem. A, 2016, 4, 4472–4478.
- 6 N. Lingappan, I. Jeon and W. Lee, J. Mater. Chem. A, 2023, 11, 17797–17809.
- 7 J. Zhang, Y. Cao, H. Xu, X. Liu, J. Gong, Y. Tong, G. Zhang, Y. Li, C. Tong and Z. Li, J. Phys. Chem. Lett., 2024, 4088–4095.
- 8 J. Teng, D. Liu, X. Zhang and J. Guo, *J. Electroanal. Chem.*, 2022, **908**, 116129.
- S. Mathew, J.-H. Sim, R. Rajmohan, O. L. Li and Y.-R. Cho, *Electrochim. Acta*, 2022, 403, 139586.