Three CoS/CoO microspheres and its mixed matrix membrane for

the highly efficient photocatalytic degradation of methyl blue

Yuping Huo^{a,b}, Tanlai Yu^{a,b}*, Yueyuan Xue^{a,b}, Guoshuai Zhang^{a,b}, Shengxin Song^a,

Yonghua Shao^a, Xiaojing Han^{a,b}

^aDepartment of Chemical and Materials Engineering, Lyuliang University, Lishi Shanxi 033001, China

^bInstitute of New Carbon-based Materials and Zero-carbon and Negative-carbon Technology, Lyuliang University, Lishi Shanxi 033001, China

Supporting Information (SI)

XRD patterns of **3-MMM** before and after recycling (**Fig. S1**); XPS spectra of **3-MMM**. (a) The survey spectra of **3-MMM**; (b) Co 2p XPS spectra; (c) O 1s XPS spectra; (d) S 2p XPS spectra (**Fig. S2**); SEM and EDS mappings of **3-MMM** (**Fig. S3**); Particle size analysis of **1-3** (**Fig. S4**); N₂ adsorption-desorption isotherm diagram of **1**, **2** and **3** at 77 K(**Fig. S5**); UV-vis spectra at different times for MB in the presence of **1**, **2**, **3**, and **3-MMM**, respectively (**Fig. S6**); UV-vis spectra for MB in the presence of **1**, **2**, **3**, and **3-MMM** under metal halide lamp irradiation (**Fig. S7**); Adsorption and photocatalytic degradation of methyl blue solution by no catalyst, **PVDF-M**, **3-MMM** and **3**, respectively (**Fig. S8**); Total decontamination efficiency of methyl blue contrast. (a) no catalyst; (b) **PVDF-M**; (c) **3-MMM**; (d) **3** (**Fig. S9**); Comparison of the photocatalytic degradation behavior of MB by **3**, **3-MMM** and some reported photocatalysts (**Table S1**).

Fig. S1 XRD patterns of **3-MMM** before and after recycling.

Fig. S2 XPS spectra of 3-MMM. (a) The survey spectra of 3-MMM; (b) Co 2p XPS spectra; (c) O 1s XPS spectra; (d) S 2p XPS spectra.

Fig. S3 (a) and (b) are SEM and EDS mappings of 3-MMM respectively.

Fig. S4 Particle size analysis of 1 (a), 2 (b) and 3(c), respectively.

Fig. S5 N_2 adsorption-desorption isotherm diagram of **1**, **2** and **3** at 77 K

Fig. S6 UV-vis spectra at different times for MB in the presence of 1, 2, 3, and 3-MMM, respectively.

Fig. S7 UV-vis spectra for MB in the presence of 1, 2, 3, and 3-MMM under metal halide lamp irradiation.

Fig. S8 Adsorption and photocatalytic degradation of methyl blue solution by no catalyst, PVDF-Membrane (PVDF-M), 3-MMM and 3, respectively.

Fig. S9 Total decontamination efficiency of methyl blue contrast. (a) no catalyst; (b) PVDF-Membrane (PVDF-M); (c) 3-MMM; (d) 3.

Table S1. Comparison of the photocatalytic degradation behavior of MB by 3, 3-MMM and some reported photocatalysts

Tupo of	Photocatalyst	MB	Solution	Irradiation	Photocatalytic	Cycle	Litoratura
rype of	dosage	concentration	Volume	time	Degradation	number	Literature
photocatalyst	(mg)	(mg/L)	(mL)	(min)	rate(%)	(time)	sources
3	20	80	20	60	97.3%	12	This work
3-MMM	20	80	20	60	97.34%	12	This work
2%C/TiO ₂	100	20	100	129			(Alkorbi et al., 2022)
ZnO nanorods/C-dots		80	20	70	74.98%		(Roza et al., 2020)
Co_3O_4 nanoparticle	5	50	20	180	91.7%		(Dhiman et al. <i>,</i> 2022)
Cu ₂ O-Based Photocatlsis	60	50	100	120	79%		(Zhou et al., 2022)
Al-doped ZnO thin films		80	10	45	79.9%		(Roza et al., 2020)

References:

- Alkorbi, A.S., Asif Javed. H.M., Hussain. S., Latif, Sana., Shabir Mahr,M., Mustafa, M. S., Alsaiari, R., Alhemiary, N., 2022. Solar light-driven photocatalytic degradation of methyl blue by carbon-doped TiO₂ nanoparticles, Opt. Mater.127, 112259. https://doi.org/10.1016/j.optmat.2022.112259.
- Dihom, H.R., Al-Shaibani, M.M., Radin Mohamed, R.M.S., Al-Gheethi, A.A., Sharma, A., Khamidun, M.H.B., 2022. Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: A critical review, J. Water Process Eng. 47. https://doi.org/10.1016/j.jwpe.2022.102705.
- Roza, L., Fauzia, V., M.Y.A., 2020. Influence of Multilayer Al-Doped ZnO Thin Film on Photocatalytic Degradation of Methyl Blue, Sains Malaysiana. 12, 3089-3095. http://dx.doi.org/10.17576/jsm-2020-

4912-21.

Roza, L., Fauzia, V., Rahman, M.Y.A., Isnaeni, I., Putro, P.A., 2020. ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution, Opt Mater. 109,110360. https://doi.org/10.1016/j.optmat.2020.110360.

Zhou, M., Ji, C., Ji, F., Chen, M., Zhong, Z., Xing, W., 2022. Micro-Octahedron Cu₂O-Based Photocatalysis-Fenton for Organic Pollutant Degradation: Proposed Coupling Mechanism in a Membrane Reactor, Ind Eng Chem Res, 61, 7255-7265. https://doi.org/10.1021/acs.iecr.2c00654.