Supporting Information

Inner-Filter Effect Pair of Nitrogen-Doped Carbon Quantum Dots-MnO₂ Nanotubes for Smartphone-Integrated Dual-mode Sensing of Glutathione and Captopril.

Ankita B. Kujur^a, Manmohan L. Satnami^a*, Yogyata Chawre^a, Pinki Miri^b, Akash Sinha^{a,b}, Rekha Nagwanshi^c, Indrapal Karbhal^a, Kallol K. Ghosh^a, Shamsh Pervez^a,

Manas Kanti Deb^a

^aSchool of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010 (Chhattisgarh), India

^bDepartment of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur-492010 (Chhattisgarh), India

^cDepartment of Chemistry, Govt. Madhav Science P. G. College, Ujjain-456010 (Madhya Pradesh), India

manmohanchem@gmail.com

Figure S1: Normalized excitation and emission spectra of N-CQDs.

Figure S2: Denvoluted XPS spectra of (A) C 1s, (B) N 1s and (C) O 1s of N-CQD.

Figure S3: Stern-Volmer plot for MnO₂ NTs quenching N-CQDs.

Table S1: Comparison table of LOD values for the GSH by using different sensing probes and techniques.

Sensing probe	Technique	Detection range	LOD	Reference s
AuNCs@BSA-MnO ₂ NSs	Fluorescence	0–0.5 mM	20 µM	1
Cobalt phthalocyanine and multiwalled carbon functionalized with Carboxyl groups	Differential pulse Voltammetry	0.5–7 mM	100 μΜ	2
CoOOH NSs	Colorimetric	33 μM-1.3 mM	13.7 μM	3
Naphthalene derivative containing piazselenole (NDP)	Colorimetric	0–80 mM	0.178 mM	4
Ag ₂ SQD/MnO ₂ NS	Fluorescence	0.3-1.2 mM	60 µM	5
N-CQDs-MnO ₂ NTs	Fluorescence	3.3-23.3μM	4.70 μΜ	This work

Table S2: Comparison table of LOD values for the CAP by using different sensing probes and techniques.

Sensing probe	Technique	Detection range	LOD	References
Hierarchical hollow MnO ₂ microspheres (HH-MnO ₂)	Colorimetric	4.6–138.1 μM	1.2 μΜ	6
-	Circular-disc spectroscopy	$10-70 \ \mu g \ mL^{-1}$	$2.38 \ \mu g \ mL^{-1}$	7
Hydroxypropyl β-cyclodextrin cross-linked polymer (HP- CDP)	Fluorometric	9.2×10^{-7} - 4.6×10^{-4} M	$1.8 \times 10^{-7} \text{ M}$	8
N-CQDs-MnO ₂ NTs	Fluorescence	3.3-30.0µM	5.22 μM	This work

References

- 1. S. Lin, H. Cheng, Q. Ouyang and H. Wei, Anal. Methods, 2016, 8, 3935–3940.
- P. M. O. Moya, M. M. Alfaro, R. Kazemi, M. A. Alpuche-Avilés, S. Griveau, F. Bedioui and S. G. Granados, *Anal. Chem.* 2017, **89**, 10726–10733.
- J. Li, L. Jiao, W. Xu, H. Yan, G. Chen, Y. Wu, L. Hu and W. Gu, Sens. Actuators, B, 2021, 329, 129247.
- X. Zeng, X. Zhang, B. Zhu, H. Jia, W. Yang, Y. Li and J. Xue, Sens. Actuators, B, 2011, 159, 142–147.
- 5. Y. Shu, J. Gao, J. Chen, J. Yan, J. Sun, D. Jin, Q. Xu and X. Hu, Talanta, 2021, 221, 121475.
- M. Nazifi, R. Ahmadi, A. M. Ramezani and G. Absalan, *Anal. Bioanal. Chem.*, 2021, 413, 7063-7072.
- 7. N. Rahman and S. Khan, ACS Omega, 2019, 4, 4252-4258.
- Y. Shi, J. Peng, X. Meng, T. Huang, J. Zhang and He, H. Anal. Bioanal. Chem., 2018, 410, 7373-7384.