Supporting Information

Electrochemical Oscillation during Galvanostatic Charging and Discharging of Zr-modified Li₄Ti₅O₁₂ in Li-Ion Batteries

Yijin Sheng, ^{a,†} Fangxu Hu, ^{a,†} Yu Wu, ^a De Li, ^{a,c,*} Wenting Ji^{a,*} and Yong Chen^{b,*} ^a State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

^b Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, China.

^c National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.

[†]Y.S. and F.H. contributed equally to this work.

* E-mail: lidenju@sina.com; jwt0316@163.com; ychen2002@163.com

Figure S1. The SEM images of $Li_{4.4}Ti_5O_{12}$ (a), $Li_{4.4}Ti_{4.75}Zr_{0.25}O_{12}$ (b), $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ (c) and $Li_{4.4}Ti_{4.25}Zr_{0.75}O_{12}$ (d) with an element ratio of Li:Ti:Zr=4.4:5:0, 4.4:4.75:0.25, 4.4:4.5:0.5 and 4.4:4.25:0.75 in the raw materials, respectively, which are sintered at 800 °C in air for 8 h.

Figure S2. (a) The XRD patterns of $Li_{4.4}Ti_5O_{12}$ (black), $Li_{4.4}Ti_{4.75}Zr_{0.25}O_{12}$ (red), $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ (green) and $Li_{4.4}Ti_{4.25}Zr_{0.75}O_{12}$ (blue), and the enlarged XRD peaks for $Li_4Ti_5O_{12}$ (b), ZrO_2 (c) and Li_2TiO_3 (d) phases. Here, all XRD patterns are calibrated by the (002) peak of graphite.

Figure S3. The Raman spectra of $Li_{4.4}Ti_5O_{12}$ (black), $Li_{4.4}Ti_{4.75}Zr_{0.25}O_{12}$ (red), $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ (green) and $Li_{4.4}Ti_{4.25}Zr_{0.75}O_{12}$ (blue), as well as and the Raman spectra of $Li_4Ti_5O_{12}$ (dark yellow) and Li_2TiO_3 (navy) phases for comparison.

Figure S4. The measured and fitted XPS spectra of $Li_{4.4}Ti_5O_{12}$ (black), $Li_{4.4}Ti_{4.75}Zr_{0.25}O_{12}$ (red), $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ (green) and $Li_{4.4}Ti_{4.25}Zr_{0.75}O_{12}$ (blue): (a) survey, (b) C 1s, (c) Li 1s, (d) O 1s, (e) Ti 2p and (f) Zr 3d.

Figure S5. The discharge and charge curves of $Li_{4.4}Ti_5O_{12}$ (a), $Li_{4.4}Ti_{4.75}Zr_{0.25}O_{12}$ (b), $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ (c) and $Li_{4.4}Ti_{4.25}Zr_{0.75}O_{12}$ (d) with a voltage range of 1.2–2.0 V vs. Li^+/Li and a current rate of 0.1 C, and the middle and right insets show the corresponding enlarged views in the end of charge and discharge plateaus, respectively.

Figure S6. (a) The STEM image of $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$, the enlarged HAADF-STEM image (b) and the corresponding EDX maps of C (c), O (d), Ti (e), Zr (f), Zr overlaping the HAADF-STEM image (g) and element analysis of spectrum (h).

Figure S7. The high-resolution STEM images of $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ for the $Li_4Ti_5O_{12}$ phase (a, b) and the ZrO₂ phase (c, d).

Figure S8. The discharge and charge curves of Li_{4.4}Ti_{4.5}Zr_{0.5}O₁₂ at different rates of 1C, 0.5C, 0.2C, 0.1C and 0.05C.

Figure S9. The Cycle performance of $Li_{4.4}Ti_5O_{12}$ and $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$ with a voltage range of 1.2–2.0 V vs. Li^+/Li and a current rate of 0.1 C.

Figure S10. Nyquist plots of EIS spectra for $Li_{4.4}Ti_5O_{12}$ and $Li_{4.4}Ti_{4.5}Zr_{0.5}O_{12}$.