Supplementary Information File:

Photophysical Properties of Pt (II) Complexes based on the Benzoquinoline (*bzq*) Ligand with OLED Implication: a Theoretical Study

Batool Moradpour Reza Omidyan*

This supplementary file contains the following information:

- 1) Comparison of the S_0 and T_1 optimized geometries of our studied complexes.
- 2) Selected optimized geometry parameters of 3a-4a complexes in the S_0 and the T_1 states.
- 3) Electronic structures (MO contributions) of the studied complexes, determined at the SCF/ccpVDZ/def2-TZVP (Pt) level of theory.
- 4) The vertical electronic transition energies of considered complexes (TD-DFT/B3LYP/ccpVDZ/def2-TZVP(Pt) level of theory.
- 5) Optical properties and Exciton generation fractions χ_T (%) of selected systems
- 6) The XYZ coordinates of the optimized structure of our eight complexes.

Figure S1) Comparison the S_0 and T_1 optimized geometries of our studied complexes.

Complex	State		Bond le	ength (Å)		Bo	nd angle/de	Dihedral angle/deg		
3 a		Pt-N	Pt-C ₁	Pt-C ₂	Pt-S	N-Pt-C ₁	N-Pt-C ₂	C ₁ -Pt-S	C ₁ -N-Pt-S	$N-C_1-Pt-C_2$
	S ₀	2.201	2.027	2.037	2.515	80.2	174.2	174.3	180.0	179.7
	T ₁	2.174	1.999	2.034	2.470	80.4	174.3	173.8	179.9	179.8
	Exp. ³⁹	2.142	2.052	2.029	2.358	80.9	173.7	174.8	-	-
3 b		Pt-N	Pt-C ₁	Pt-C ₂	Pt-P	N-Pt-C ₁	N-Pt-C ₂	C ₁ -Pt-P	C ₁ -N-Pt-P	N-C ₁ -Pt-C ₂
	\mathbf{S}_0	2.219	2.058	2.038	2.446	79.2	171.7	179.6	179.9	179.9
	T ₁	2.188	2.037	2.038	2.393	79.5	171.8	178.7	179.0	179.5
	Exp. ⁴⁰	2.136	2.054	2.008	2.301	80.2	170.4	176.7	-	-
3c		Pt-N	Pt-C ₁	Pt-C ₂	Pt-P	N-Pt-C ₁	N-Pt-C ₂	C ₁ -Pt-P	C ₁ -N-Pt-P	N-C ₁ -Pt-C ₂
	\mathbf{S}_0	2.215	2.060	2.037	2.431	79.3	171.9	177.7	178.3	177.7
	T ₁	2.184	2.037	2.038	2.383	79.6	172.1	176.8	178.9	179.5
	Exp. ⁴⁰	2.145	2.041	2.013	2.294	80.4	170.9	176.4	-	-
4a		Pt-N	Pt-C ₁	Pt-C ₂	Pt-S	N-Pt-C ₁	N-Pt-C ₂	C ₁ -Pt-S	C ₁ -N-Pt-S	N-C ₁ -Pt-C ₂
	S ₀	2.201	2.027	2.037	2.514	80.2	174.2	174.3	180.0	179.8
	T ₁	2.125	1.195	2.017	2.438	80.4	174.5	173.7	180.0	179.8
	Exp. ⁴¹	2.128	2.030	2.009	2.358	81.5	173.9	173.5	-	-

Table S1. Selected optimized geometry parameters of **3a-4a** complexes in the S_0 and the T_1 states at the B3LYP level of theory. The experimental values obtained from the XRD structures have been adopted from the literature.³⁹⁻⁴¹ The C_2 , P, S, and C_1 indicate bzq Carbon, Phosphorus, Sulfur, and Me carbon atoms connecting R_1 and R_2 ligands to central Pt.

 Table S2. Frontier molecular orbital contribution (%) in the ground state for complexes 1a-4a.

Orbitals	E (eV)		Contr	ibution ([%)	Orbital interpretation (from high affect to
		Pt	bzq	Me	$P-(Ph_2)(C_3H_5)$	minimum)
HOMO-12	-7.522	12	45	-	43	$\pi(bzq) + \pi(P(Ph)_2(C_3H_5)) + d(Pt))$
HOMO-7	-7.041	4	5	-	91	$\pi(\mathrm{P}(\mathrm{Ph})_2(\mathrm{C}_3\mathrm{H}_5))$
HOMO-6	-6.588	38	42	1	19	$\pi(bzq) + d(Pt) + \pi(P(Ph)_2(C_3H_5))$
HOMO-5	-6.459	73	10	10	7	$d(Pt) + \pi(bzq) + \sigma(Me)$
HOMO-4	-6.370	14	41	2	43	$[n(P) + \pi(Ph)_2(C_3H_5)] + \pi(bzq) + d(Pt)$
HOMO-3	-6.222	21	75	2	3	$\pi(bzq) + d(Pt)$
HOMO-2	-6.755	70	20	10	-	$d(Pt) + \pi(bzq) + \sigma(Me)$
HOMO-1	-6.533	85	9	6	-	dz ² (Pt)
HOMO	-5.374	26	72	-	2	$\pi(bzq) + d(Pt)$
LUMO	-1.598	4	96	-	-	$\pi^*(bzq)$ most around N atom
LUMO+1	-1.112	4	56	-	40	$\pi^{*}(bzq) + \pi^{*}(P(Ph)_{2}(C_{3}H_{5}))$
LUMO+2	-0.981	2	29	-	68	$\pi^{*}(P(Ph)_{2}(C_{3}H_{5})) + \pi^{*}(bzq)$
LUMO+3	-0.861	1	5	1	93	$\pi^*(\mathrm{P}(\mathrm{Ph})_2(\mathrm{C}_3\mathrm{H}_5))$
LUMO+4	-0.663	-	7	-	93	$\pi^*(\mathrm{P}(\mathrm{Ph})_2(\mathrm{C}_3\mathrm{H}_5))$
LUMO+5	-0.368	2	-	-	98	$\pi^*(\mathrm{P}(\mathrm{Ph})_2(\mathrm{C}_3\mathrm{H}_5))$
LUMO+6	-0.123	7	72	3	18	$\pi^{*}(bzq) + \pi^{*}(P(Ph)_{2}(C_{3}H_{5}))$
LUMO+7	-0.021	11	8	-	81	$\pi^{*}(P(Ph)_{2}(C_{3}H_{5})) + \pi^{*}(bzq)$

Orbitals	E (eV)		Contr	ibution (%	(0)	Orbital interpretation (from high affect to
		Pt	bzq	Me	S-(Me ₂)	minimum)
HOMO-9	-8.134	1	98	1	-	π(bzq)
HOMO-8	-7.615	19	79	1	1	$\pi(bzq) + d(Pt)$
HOMO-7	-7.138	16	38	30	16	$\pi(bzq) + \sigma(Me) + d(Pt) + \sigma(S-Me_2)$
HOMO-6	-6.786	16	30	13	41	$\pi(bzq) + d(Pt) + \sigma(S-Me_2) + \sigma(Me)$
HOMO-5	-6.606	40	59	-	1	$\pi(bzq) + d(Pt)$
HOMO-4	-6.298	76	6	8	10	$d(Pt) + \sigma(S-Me_2)$
HOMO-3	-6.277	16	83	1	-	$\pi(bzq) + d(Pt)$
HOMO-2	-5.741	74	19	7	-	$d(Pt) + \pi(bzq)$
HOMO-1	-5.527	91	5	4	-	dz ² (Pt)
HOMO	-5.387	28	70	-	2	$\pi(bzq) + d(Pt)$
LUMO	-1.651	4	96	-	-	$\pi^*(bzq)$
LUMO+1	-1.127	5	91	-	4	$\pi^*(bzq)$
LUMO+2	-1.166	11	80	1	8	$\pi^*(bzq) + d(Pt)$
LUMO+3	0.345	14	36	-	50	$\sigma^*(S-Me_2) + \pi^*(bzq) + d(Pt)$
LUMO+4	0.826	38	29	12	21	$d(Pt) + \pi^*(bzq) + \sigma^*(S-Me_2) + \sigma^*(Me)$
LUMO+5	0.933	2	87	-	11	$\pi^*(bzq) + \sigma^*(S-Me_2)$

Orbitals	E (eV)		Contr	ribution (%)		Orbital interpretation (from high affect to
		Pt	bzq	S-(Ph)	P-(Ph ₃)	minimum)
HOMO-13	-7.247	4	2	-	94	$\pi(P(Ph)_3)$
HOMO-10	-6.976	47	15	18	20	$d(Pt) + \pi(P(Ph)_3) + \pi(S-Ph) + \pi(bzq)$
HOMO-9	-6.931	38	13	25	24	$d(Pt) + \pi(S-Ph) + \pi(P(Ph)_3) + \pi(bzq)$
HOMO-8	-6.867	7	4	2	87	$\pi(P(Ph)_3)$
HOMO-7	-6.822	38	46	9	7	$\pi(bzq) + d(Pt)$
HOMO-6	-6.651	3	3	30	64	$[n(S) + \pi(Ph)] + \pi(P(Ph)_3)$
HOMO-5	-6.363	15	83	-	2	$\pi(bzq) + d(Pt)$
HOMO-4	-6.259	14	1	81	4	$\pi(Ph) + dz^2(Pt)$
HOMO-3	-6.176	73	3	19	5	$dz^2(Pt) + \pi(Ph)$
HOMO-2	-5.915	8	34	55	3	$[n(S) + \pi(Ph)] + \pi(bzq)$
HOMO-1	-5.662	21	62	17	1	$\pi(bzq) + d(Pt) + n(S)$
НОМО	-4.564	6	3	89	2	$[n(S) + \pi(Ph)]$
LUMO	-1.883	4	94	-	2	$\pi^*(bzq)$ most around N atom
LUMO+1	-1.298	5	92	-	3	$\pi^*(bzq)$
LUMO+2	-1.091	-	3	-	97	$\pi^*(\mathrm{P}(\mathrm{Ph})_3)$
LUMO+3	-0.919	15	6	5	74	$\pi^*(P(Ph)_3) + d(Pt)$
LUMO+4	-0.801	2	5	1	92	$\pi^*(\mathrm{P}(\mathrm{Ph})_3)$
LUMO+5	-0.606	4	12	1	83	$\pi^*(\mathrm{P}(\mathrm{Ph})_3) + \pi^*(\mathrm{bzq})$
LUMO+6	-0.485	4	13	1	82	$\pi^*(\mathrm{P}(\mathrm{Ph})_3) + \pi^*(\mathrm{bzq})$
LUMO+7	-0.294	5	58	2	35	$\pi^*(bzq) + \pi^*(P(Ph)_3)$
LUMO+8	-0.063	1	4	4	91	$\pi^*(\mathrm{P}(\mathrm{Ph})_3)$
LUMO+9	0.087	12	20	18	50	$\pi^{*}(P(Ph)_{3}) + \pi^{*}(bzq) + \pi^{*}(S-Ph) + d(Pt)$
LUMO+10	0.396	8	28	47	17	$\pi^{*}(S-Ph) + \pi^{*}(bzq) + \pi^{*}(P(Ph)_{3})$

\mathbf{r}	h
4	D

Orbitals	E (eV)		Contr	ibution (%)		Orbital interpretation (from high affect to
		Pt	bzq	S-(Py)	P-(Ph ₃)	minimum)
HOMO-10	-6.977	19	4	41	36	$\pi(\text{S-py}) + \pi(\text{P}(\text{Ph})_3) + d(\text{Pt})$
HOMO-9	-6.839	45	12	14	29	$d(Pt) + \pi(P(Ph)_3) + \pi(S-py) + \pi(bzq)$
HOMO-8	-6.799	37	10	6	57	$\pi(\mathrm{P}(\mathrm{Ph})_3) + \mathrm{d}(\mathrm{Pt})$
HOMO-7	-6.748	37	49	5	9	$\pi(bzq) + d(Pt)$
HOMO-6	-6.684	7	4	16	73	$\pi(P(Ph)_3) + \pi(S-py)$
HOMO-5	-6.552	17	3	64	16	$\pi(\text{S-py}) + d(\text{Pt}) + \pi(\text{P}(\text{Ph})_3)$
HOMO-4	-6.280	18	76	2	4	$\pi(bzq) + d(Pt)$
HOMO-3	-6.058	8	32	57	3	π (S-py) + π (bzq)
НОМО-2	-5.873	67	3	25	5	$d(Pt) + \pi(S-py)$
HOMO-1	-5.584	26	65	8	1	$\pi(bzq) + d(Pt)$
HOMO	-4.847	8	6	83	3	$[n(S) + \pi(py)]$
LUMO	-1.582	3	91	1	5	$\pi^*(bzq)$
LUMO+1	-1.221	4	91	1	4	$\pi^*(bzq)$
LUMO+2	-0.995	3	6	1	90	$\pi^*(\mathrm{P}(\mathrm{Ph})_3)$
LUMO+3	-0.819	16	14	4	66	$\pi^*(\mathrm{P}(\mathrm{Ph})_3) + \mathrm{d}(\mathrm{Pt}) + \pi^*(\mathrm{bzq})$
LUMO+4	-0.676	1	4	2	93	$\pi^*(\mathrm{P}(\mathrm{Ph})_3)$
LUMO+5	-0.559	4	13	2	81	$\pi^*(\mathrm{P}(\mathrm{Ph})_3) + \pi^*(\mathrm{bzq})$

LUMO+6	-0.386	4	19	3	74	$\pi^*(\mathrm{P}(\mathrm{Ph})_3) + \pi^*(\mathrm{bzq})$
LUMO+7	-0.192	4	45	14	37	$\pi^{*}(bzq) + \pi^{*}(P(Ph)_{3}) + \pi^{*}(S-py)$
LUMO+8	-0.131	3	14	73	10	$\pi^{*}(S-py) + \pi^{*}(bzq) + \pi^{*}(P(Ph)_{3})$
LUMO+9	-0.037	1	5	8	86	$\pi^*(\mathrm{P}(\mathrm{Ph})_3)$
LUMO+10	0.196	8	16	39	37	$\pi^*(S-py) + \pi^*(P(Ph)_3) + \pi^*(bzq)$

Orbitals	E (eV)		Contri	ibution (%)	Orbital interpretation (from high affect to	
		Pt	bzq	<i>р-Ме</i> С ₆ Н ₄	S-(Me ₂)	minimum)
HOMO-10	-7.732	22	76	1	1	$\pi(bzq) + d(Pt)$
HOMO-9	-7.312	24	34	24	18	$\pi(bzq) + d(Pt) + \pi (p-MeC_6H_4) + \sigma(S-Me_2)$
HOMO-8	-7.251	33	23	41	3	$\pi \left(p\text{-MeC}_{6}\text{H}_{4}\right) + d(\text{Pt}) + \pi(\text{bzq})$
HOMO-7	-6.761	20	23	7	50	$\sigma(S-Me_2) + \pi(bzq) + d(Pt)$
HOMO-6	-6.728	40	53	2	6	$\pi(bzq) + d(Pt)$
HOMO-5	-6.398	30	65	5	-	$\pi(bzq) + d(Pt)$
HOMO-4	-6.188	9	1	87	3	$\pi \left(p\text{-MeC}_{6}\mathrm{H}_{4} ight)$
HOMO-3	-6.044	55	36	8	1	$d(Pt) + \pi(bzq)$
HOMO-2	-5.643	85	6	8	1	d(Pt)
HOMO-1	-5.480	28	70	-	2	$\pi(bzq) + d(Pt)$
HOMO	-5.404	24	5	67	4	$\pi (p-MeC_6H_4) + d(Pt)$
LUMO	-1.758	4	94	2	0	$\pi^*(bzq)$
LUMO+1	-1.205	4	87	1	8	$\pi^*(bzq)$
LUMO+2	-0.232	8	72	5	15	$\pi^*(bzq) + \sigma^*(S-Me_2)$
LUMO+3	0.297	6	21	2	71	$\sigma^*(S-Me_2) + \pi^*(bzq)$
LUMO+4	0.412	4	7	82	7	$\pi^*(p ext{-MeC}_6 ext{H}_4)$
LUMO+5	0.532	21	15	47	17	$\pi^*(p\operatorname{-MeC}_6H_4) + d(Pt) + \sigma^*(S\operatorname{-Me}_2) + \pi^*(bzq)$
LUMO+6	0.736	15	35	27	23	$\pi^{*}(bzq) + \pi^{*}(p-MeC_{6}H_{4}) + \sigma^{*}(S-Me_{2}) + d(Pt)$
LUMO+7	0.899	02	62	4	32	$\pi^*(bz\alpha) + \sigma^*(S-Me_2)$

3a

3b

Orbitals	E (eV)		Cont	ribution (%)		Orbital interpretation (from high affect to
		Pt	bzq	<i>p-Me</i> C ₆ H ₄	P-(Ph ₂) (Me)	minimum)
HOMO-13	-7.528	9	28	4	59	$\pi(P(Ph)_2(Me)) + \pi(bzq)$
HOMO-12	-7.376	3	3	2	92	$\pi(P(Ph)_2(Me))$
HOMO-8	-7.086	20	30	35	15	$\pi (p-\text{MeC}_6\text{H}_4) + \pi(\text{bzq}) + d(\text{Pt}) +$
HOMO-7	-6.645	45	50	1	4	$\pi(bzq) + d(Pt)$
HOMO-6	-6.531	16	30	2	52	$\pi(P(Ph)_2(Me)) + \pi(bzq) + d(Pt)$
HOMO-5	-6.315	26	69	5	1	$\pi(bzq) + d(Pt)$
HOMO-4	-6.076	15	2	82	1	$\pi (p-\text{MeC}_6\text{H}_4) + d(\text{Pt})$
HOMO-3	-5.994	53	32	14	1	$d(Pt) + \pi(bzq) + \pi (p-MeC_6H_4)$
НОМО-2	-5.532	82	7	9	2	d(Pt)
HOMO-1	-5.439	28	68	-	4	$\pi(bzq) + d(Pt)$
HOMO	-5.300	22	6	64	8	$\pi (p-\text{MeC}_6\text{H}_4) + d(\text{Pt})$
LUMO	-1.583	4	93	2	1	$\pi^*(bzq)$

LUMO+1	-1.026	3	86	1	10	$\pi^*(bzq)$
LUMO+2	-0.994	3	4	1	92	$\pi^*(P(Ph)_2(Me))$
LUMO+3	-0.774	4	6	1	89	$\pi^*(P(Ph)_2(Me))$
LUMO+4	-0.637	4	7	-	89	$\pi^*(P(Ph)_2(Me))$
LUMO+5	-0.431	2	5	1	92	$\pi^*(P(Ph)_2(Me))$
LUMO+6	-0.084	8	73	5	14	$\pi^*(bzq)$
LUMO+10	0.895	12	23	53	12	$\pi^*(p-MeC_6H_4)+\pi^*(bzq)+(Pt)+\pi^*(P(Ph)_2(Me))$

Orbitals	E (eV)		Cont	ribution (%)		Orbital interpretation (from high affect to
		Pt	bzq	<i>р-Ме</i> С ₆ Н ₄	P-(Ph) (Me ₂)	minimum)
HOMO-11	-7.458	5	19	7	69	$\pi(P(Ph)_2(Me)) + \pi(bzq)$
HOMO-10	-7.371	4	4	2	90	$\pi(P(Ph)_2(Me))$
HOMO-9	-7.281	49	13	30	8	$d(Pt) + \pi(p-MeC_6H_4) + \pi(bzq)$
HOMO-8	-7.118	20	30	36	14	$\pi(p\text{-MeC}_6\text{H}_4) + \pi(\text{bzq}) + d(\text{Pt}) + \pi(\text{P}(\text{Ph})_2(\text{Me}))$
HOMO-7	-6.663	44	49	2	5	$\pi(bzq) + d(Pt)$
HOMO-6	-6.610	18	35	2	44	$\pi(P(Ph)_2(Me)) + \pi(bzq) + d(Pt)$
HOMO-5	-6.329	25	70	5	-	$\pi(bzq) + d(Pt)$
HOMO-4	-6.100	13	2	84	1	$\pi(p-\mathrm{MeC}_6\mathrm{H}_4) + \mathrm{d}(\mathrm{Pt})$
HOMO-3	-5.997	57	32	11	-	$d(Pt) + \pi(bzq) + \pi(p-MeC_6H_4)$
НОМО-2	-5.544	82	6	9	2	d(Pt)
HOMO-1	-5.449	28	69	-	3	$\pi(bzq) + d(Pt)$
HOMO	-5.319	22	6	64	8	$\pi(p-\mathrm{MeC}_6\mathrm{H}_4) + \mathrm{d}(\mathrm{Pt})$
LUMO	-1.610	3	93	2	2	$\pi^*(bzq)$
LUMO+1	-1.042	3	86	2	9	$\pi^*(bzq)$
LUMO+2	-0.921	2	8	-	90	$\pi^*(P(Ph)_2(Me))$
LUMO+3	-0.616	5	5	1	89	$\pi^*(P(Ph)_2(Me))$
LUMO+4	-0.125	9	74	5	12	$\pi^*(bzq) + \pi^*(P(Ph)_2(Me))$
LUMO+5	0.551	6	25	30	39	$\pi^{*}(P(Ph)_{2}(Me)) + \pi^{*}(p-MeC_{6}H_{4}) + \pi^{*}(bzq)$
LUMO+6	0.587	9	24	48	19	$\pi^{*}(p-MeC_{6}H_{4}) + \pi^{*}(P(Ph)_{2}(Me)) + \pi^{*}(bzq)$
LUMO+7	0.712	13	27	17	43	$\pi^{*}(P(Ph)_{2}(Me)) + \pi^{*}(bzq) + \pi^{*}(p-MeC_{6}H_{4}) +$
LUMO+8	0.857	8	16	63	13	$\pi^{*}(p-MeC_{6}H_{4}) + \pi^{*}(bzq) + \pi^{*}(P(Ph)_{2}(Me))$

3c

Orbitals	E (eV)		Contribution (%)			Orbital interpretation (from high affect to
		Pt	bzq	Ph	S-(Me ₂)	minimum)
HOMO-10	-7.746	20	79	-	1	$\pi(bzq) + d(Pt)$
HOMO-7	-6.760	17	22	6	55	$\sigma(S-Me_2) + \pi(bzq) + d(Pt)$
HOMO-6	-6.741	41	56	2	1	$\pi(bzq) + d(Pt)$
HOMO-5	-6.409	22	72	6	-	$\pi(bzq) + d(Pt)$
HOMO-4	-6.224	8	3	87	2	$\pi(Ph)$
HOMO-3	-6.064	65	28	7	-	$d(Pt) + \pi(bzq)$
HOMO-2	-5.613	76	4	19	1	$d(Pt) + \pi(Ph)$
HOMO-1	-5.576	44	6	45	5	$\pi(Ph) + d(Pt)$

4a

HOMO	-5.514	31	66	-	2	$\pi(bzq) + d(Pt)$
LUMO	-1.657	3	95	2	-	$\pi^*(bzq)$
LUMO+1	-1.127	3	89	1	7	$\pi^*(bzq)$
LUMO+2	-0.183	8	72	5	15	$\pi^*(bzq) + \sigma^*(S-Me_2)$
LUMO+3	0.370	7	23	1	69	$\sigma^*(S-Me_2) + \pi^*(bzq)$
LUMO+4	0.430	28	26	26	20	$d(Pt) + \pi^*(bzq) + \pi^*(Ph) + \sigma^*(S-Me_2)$
LUMO+5	0.509	2	8	86	4	$\pi^*(\mathrm{Ph})$
LUMO+6	0.743	13	27	41	19	$\pi^*(Ph) + \pi^*(bzq) + \sigma^*(S-Me_2) + d(Pt)$
LUMO+7	0.948	2	57	4	37	$\pi^*(bzq) + \sigma^*(S-Me_2)$
HOMO-10	-7.746	20	79	-	1	$\pi(bzq) + d(Pt)$

Table S3. The vertical electronic transition energies of seven considered complexes:

State	Major contribution	Ε	f	λ_{cal}	Assignment
	(%)	(eV)	-	(nm)	
S3	$H – 2 \rightarrow L \ (66.9\%)$	3.592	0.0817	345.2	¹ MLCT/ ¹ ILCT
<i>S</i> ₇	$H \rightarrow L + l \ (81.1\%)$	3.916	0.0259	316.6	¹ ILCT/ ¹ MLCT
S ₈	$H - 4 \rightarrow L (76.5\%)$	4.170	0.0419	297.4	¹ MLCT/ ¹ LLCT
Sg	$H - 4 \rightarrow L + l (44.4\%)$	4.335	0.0953	286	¹ MLCT/ ¹ LLCT
S ₁₂	$H \rightarrow L+2 (36.8\%)$	4.554	0.0500	272.3	¹ ILCT/ ¹ MLCT
	$H - 5 \rightarrow L (35.5\%)$				
	$\underline{H-2 \rightarrow L+2 (11.1\%)}$				1
S ₁₄	$H-2 \rightarrow L+2 \ (96.8\%)$	4.783	0.0287	259.2	¹ MLCT
S16	$H-2 \rightarrow L+2 \ (50.4\%)$	4.867	0.0233	254.8	¹ MLCT/ ¹ ILCT
	$H - 5 \rightarrow L + l \ (21.8\%)$				
	$H \rightarrow L + 2 (14.1\%)$				
S17	$H - 5 \rightarrow L + l \ (38.3\%)$	4.980	0.1454	249	¹ MLCT/ ¹ ILCT
	$H-2 \rightarrow L+2 \ (21.5\%)$				
<i>S</i> ₁₈	$H-1 \rightarrow L+4 (35.4\%)$	5.097	0.5035	243.3	¹ MLCT
	$H - 4 \rightarrow L + l \ (11.2\%)$				
S ₂₄	$H \rightarrow L + 3 (70.9\%)$	5.296	0.0765	234.1	¹ LLCT/ ¹ MLCT
S25	$H - 1 \rightarrow L + 3 (90.3\%)$	5.384	0.0678	230.3	¹ MLCT
S26	$H - 8 \rightarrow L (30.3\%)$	5.412	0.1103	229.1	¹ ILCT/ ¹ MLCT
	$H-2 \rightarrow L+3 (26.9\%)$				
	$H - 3 \rightarrow L + 4 \ (11.8\%)$				
S27	$H – 3 \rightarrow L + 4 \ (65.5\%)$	5.443	0.0383	227.8	¹ LMCT/ ¹ LLCT
	$H-2 \rightarrow L+3 \ (17.1\%)$				
S28	$H - 2 \rightarrow L + 3 (44.2\%)$	5.454	0.1450	227.3	¹ MLCT/ ¹ LLCT
	$H-8 \rightarrow L (22.1\%)$				
S29	$H - 8 \rightarrow L + l \ (29.2\%)$	5.676	0.0535	218.4	¹ MLCT/ ¹ LLCT
	$H \rightarrow L + 5 (35.5\%)$				
	$H-4 \rightarrow L+2 (19.2\%)$				
S31	$H^-5 \rightarrow L^+2 \ (47.9\%)$	5.814	0.1523	213.2	¹ MLCT/ ¹ LLCT
	$H \rightarrow L + 5 (31.6\%)$				
S37	$H-4 \rightarrow L+2 (23.7\%)$	6.075	0.4203	204.1	¹ MLCT/ ¹ LLCT/ ¹ ILCT
	$H – 9 \rightarrow L + l (35.5\%)$				
	$H \rightarrow L + 5 \ (12.7\%)$				
S44	$H - 4 \rightarrow L + 3 (34.1\%)$	6.364	0.4919	194.8	¹ MLCT/ ¹ LLCT

1	
,	1
4	u

State	Major contribution (%)	E (eV)	f	λ _{cal} (nm)	Assignment
S_4	H−1 → L (93.1%)	3.261	0.075	380.2	¹ MLCT/ ¹ LLCT
S10	$H - 1 \rightarrow L + 1 (47.1\%)$	3.831	0.032	323.6	¹ MLCT/ ¹ LLCT
	H−4 → L (44.3%)				
<i>S</i> ₁₂	H−1 → L+3 (36.8%)	4.026	0.023	308	¹ MLCT/ ¹ LLCT
	H−1 → L+2 (22.7%)				

S.a	$H \rightarrow I \pm 7 (A77\%)$	4 0 3 5	0.103	3073	
513	$H \to L + 9 (12.0\%)$	4.035	0.105	507.5	LLCI
S ₁₄	$H \to L + 1 (22.3\%)$	4.088	0.100	303.3	¹ MLCT/ ¹ LLCT
S15	<i>H</i> → <i>L</i> +8 (59.0%)	4.166	0.033	297.6	¹ LLCT
10	$H \rightarrow L + 7 (24.2\%)$				
S16	<i>H−2 → L+1 (50.6%)</i>	4.172	0.023	297.2	¹ LLCT/ ¹ MLCT
	$H - 3 \rightarrow L + 1 (15.3\%)$				
S18	$H{-}1 \rightarrow L{+}2 (36.9\%)$	4.208	0.029	294.6	¹ LLCT/ ¹ MLCT
	$H-1 \to L+3$ (22.8%)				
S ₁₉	$H-3 \rightarrow L+3 (37.6\%)$	4.225	0.060	293.5	¹ MLC1/ ¹ LLC1
S	$\frac{H-3 \to L+2 (13.5\%)}{H-3 \to I \pm 1 (25.0\%)}$	1.268	0.080	290 5	¹ MLCT/ ¹ LLCT
521	$H \rightarrow L + 10(23.0\%)$	4.200	0.000	290.3	WILCI/ LLCI
	$H - 2 \rightarrow L + 1 (12.8\%)$				
S24	$H = 9 \rightarrow L (60.2\%)$	4.417	0.073	280.7	¹ MLCT/ ¹ LLCT
 S26	$H-1 \rightarrow L+4 (44.4\%)$	4.459	0.027	278.0	¹ LLCT/ ¹ MLCT
-20	$H-2 \to L+2 (12.5\%)$				
	$H-7 \rightarrow L(12.4\%)^{2}$				
S ₂₇	<i>H−1 → L+4 (29.2%)</i>	4.489	0.135	276.2	¹ LLCT/ ¹ MLCT/ ¹ LMCT
	$H - 2 \rightarrow L + 2 (25.8\%)$				
	$H-2 \to L+3 (20.0\%)$				
S29	$H - 1 \rightarrow L + 5 (25.7\%)$	4.591	0.088	270.1	¹ MLCT/ ¹ LLCT
	$H-2 \to L+3 \ (11.2\%)$				
	$\frac{H-7 \rightarrow L (11.1\%)}{H-2 (52.0\%)}$	4 (22	0.005	2(0.2	
S ₃₀	$H-3 \rightarrow L+2 (50.9\%)$	4.623	0.035	268.2	¹ MLC1/ ¹ LLC1
	$H_2 \rightarrow L_2 (17.0\%)$				
.	$\frac{H^{-1} \rightarrow L^{+2} (10.0\%)}{H^{-1} \rightarrow L^{+5} (10.0\%)}$	1 602	0.054	264.9	¹ MLCT/ ¹ LLCT
533	$H = I \rightarrow L + J (19.9\%)$	4.005	0.034	204.0	WILCI/ LLCI
	$\frac{H_{-12} \rightarrow L(12.9\%)}{H_{-12} \rightarrow L(20.0\%)}$	4.720	0 030	262.7	¹ LLCT/ ¹ MLCT
535	$H_{-1} \rightarrow L(2).7\%)$ $H_{-1} \rightarrow I \pm 5(14.7\%)$	4.720	0.037	202.7	LLC1/ MILC1
<u> </u>	$\frac{H_{-1} \rightarrow L + J(14.7\%)}{H_{-1} \Lambda \rightarrow I(21.8\%)}$	1.756	0.051	260.7	¹ MI CT/ ¹ I I CT
536	$H = 10 \Rightarrow L(51.0\%)$ $H = 1 \Rightarrow L = 5(15.3\%)$	4.750	0.031	200.7	MILCI/ LLCI
	$H - 4 \rightarrow L + 3 (14.2\%)$				
S37	$H-1 \to L+6 \ (26.5\%)$	4.780	0.057	259.4	¹ LLCT/ ¹ MLCT
	H→L+11 (18.6%)				
	H→L+12 (13.5%)				
S39	H−2 → L+4 (46.9%)	4.829	0.024	256.8	¹ LLCT/ ¹ MLCT
	$H-3 \to L+4 \ (14.8\%)$				
	$H \rightarrow L + 11 (11.5\%)$		0.0=1	0=(0	
S ₄₀	$H-1 \to L+6 (20.5\%)$	4.840	0.054	256.2	¹ LLC1/ ¹ MLC1
	$\Pi = / \rightarrow L + I (18.9\%)$ $H = 11 \rightarrow I (15.9\%)$				
S	$\frac{H-11 \rightarrow L(13.270)}{H-3 \rightarrow L+4(61.306)}$	4 884	0 044	253.8	1 MLCT/ 1 LLCT
<u> </u>	$H = 4 \rightarrow L \neq 2 (45,7\%)$	4,893	0.044	253.0	¹ LLCT/ ¹ MLCT
544	$H \to L + 5 (19.3\%)$	-1075	0.027	233.4	LLC1/ WILC1

つん	
20	

State	Major contribution	Ε	f	λ_{cal}	Assignment
	(%)	(eV)	-	(nm)	_
S_3	$H{-}1 \rightarrow L (87.5\%)$	3.131	0.033	396	¹ ILCT/ ¹ MLCT
S10	$H - 1 \rightarrow L + 1 (57.9\%)$	3.736	0.021	331.9	¹ ILCT/ ¹ MLCT
	$H-4 \rightarrow L(31.9\%)$				
<i>S</i> 13	$H \rightarrow L + 7(38.8\%)$	3.950	0.028	313.9	¹ LLCT
	$H \rightarrow L + \mathcal{B}(38.3\%)$				
S14	$H{-}1{\rightarrow}L{+}3(39.7\%)$	3.970	0.039	312.3	¹ LLCT/ ¹ MLCT
	$H - 2 \rightarrow L + 3 (13.7\%)$				
S15	$H - 2 \rightarrow L + 3 (29.2\%)$	3.985	0.042	311.1	¹ MLCT/ ¹ ILCT
S16	$H - 1 \rightarrow L + 2 (39.6\%)$	4.010	0.030	309.2	¹ LLCT/ ¹ MLCT
	$H - 2 \rightarrow L + 3 (16.6\%)$				
S19	$H \rightarrow L + 9 (69.5\%)$	4.090	0.032	303.2	¹ LLCT
S ₂₃	$H - 4 \rightarrow L + 1 (28.7\%)$	4.190	0.092	295.9	¹ ILCT/ ¹ MLCT/ ¹ LLCT
	$H-7 \rightarrow L(20.3\%)$				
S25	$H \rightarrow L (64.6\%)$	4.261	0.077	291	¹ MLCT/ ¹ LLCT
	$H - 9 \rightarrow L (12.3\%)$				
S31	$H-10 \rightarrow L(23.6\%)$	4.518	0.056	274.4	¹ LLCT/ ¹ MLCT/ ¹ L
	$H \rightarrow J \rightarrow L + 3 (20.5\%)$				MCT
	$H-9 \rightarrow L(14.4\%)$				
S32	$H{-}3{\rightarrow}L{+}3(29.4\%)$	4.535	0.068	273.4	¹ LLCT/ ¹ LMCT/ ¹ M
S33	$H - 1 \rightarrow L + 3 (22.2\%)$	4.577	0.087	270.9	¹ LLCT/ ¹ MLCT
	$H - 7 \rightarrow L (12.8\%)$				
S36	$H-1 \rightarrow L+3$ (21.1%)	4.662	0.104	266	¹ LLCT/ ¹ MLCT
	$H - 5 \rightarrow L + 1$ (12.6%)				
S46	$H-2 \rightarrow L+3$ (13.9%)	4.818	0.093	257.3	¹ MLCT/ ¹ LLCT
	$H \rightarrow L + 10 (13.6\%)$				

State	Major contribution	E (eV)	f	λ _{cal} (nm)	Assignment
	$H \rightarrow J (49.1\%)$	3.718	0.045	333.5	¹ MLCT/ ¹ ILCT
	$H - 1 \rightarrow L + 1$ (35.1%)				
<i>S</i> ₆	$H - 2 \rightarrow L + 1 (98.2\%)$	3.825	0.010	324.1	¹ MLCT
<i>S</i> ₇	$H{-}1 \rightarrow L{+}1 (47.3\%)$	3.907	0.240	317.3	¹ ILCT/ ¹ MLCT
	$H \rightarrow L(23.2\%)$				
S ₈	$H{-}4 \rightarrow L(41.1\%)$	4.097	0.033	302.6	¹ LLCT/ ¹ MLCT/ ¹ IL
Sg	$H \rightarrow L + 2 (36.8\%)$	4.133	0.062	300	¹ LLCT/ ¹ MLCT/ ¹ IL
	$H - 5 \rightarrow L (35.5\%)$				СТ
S ₁₂	$H - 5 \rightarrow L + 1 (45.8\%)$	4.405	0.072	281.5	¹ ILCT/ ¹ MLCT
	$H-7 \rightarrow L (20.7\%)$				
<i>S</i> ₁₃	$H \rightarrow T $ (39.0%)	4.578	0.076	270.8	¹ LLCT/ ¹ MLCT/ ¹ ILCT
	$H-1 \rightarrow L+2(31.9\%)$				
S20	$H - 7 \rightarrow L + 1 (38.5\%)$	4.952	0.110	250.4	¹ LLCT/ ¹ MLCT
	$H \rightarrow L + 6 (12.7\%)$				
S22	$H - 2 \rightarrow L + 6 (50.9\%)$	5.002	0.079	247.9	¹ MLCT
	$H - 2 \rightarrow L + 5 (27.7\%)$				
S ₂₄	$H - 3 \rightarrow L + 2 (32.1\%)$	5.140	0.451	241.2	¹ MLCT/ ¹ LLCT

<i>S</i> 25	$H-1 \rightarrow L+6 (37.4\%)$ $H-1 \rightarrow L+5 (28.5\%)$	5.151	0.057	240.7	¹ MLCT/ ¹ LLCT
S ₂₆	$H \rightarrow 3 \rightarrow L + 2 (17.5\%)$ $H \rightarrow 7 \rightarrow L + 1 (16.4\%)$	5.176	0.063	239.5	¹ MLCT/ ¹ LLCT
S ₂₈	$H \rightarrow L + 7 (62.8\%)$ $H - 1 \rightarrow L + 3 (12.6\%)$	5.253	0.036	236	¹ LLCT/ ¹ MLCT
S ₃₂	$H-1 \rightarrow L+4 (48.2\%)$ $H-1 \rightarrow L+3 (12.0\%)$	5.353	0.058	231.6	¹ LLCT/ ¹ MLCT
S33	$H-2 \rightarrow L+4 (51.9\%)$ $H-9 \rightarrow L+1 (32.0\%)$	5.375	0.032	230.7	¹ MLCT
S ₃₆	$H-10 \rightarrow L (42.1\%)$ $H-5 \rightarrow L+2 (15.4\%)$	5.460	0.378	227.1	¹ ILCT/ ¹ MLCT
S ₃₇	$H-1 \rightarrow L+5 (37.7\%)$ $H-1 \rightarrow L+6 (22.9\%)$	5.474	0.034	226.5	¹ LLCT ¹ MLCT

3b

State	Major contribution	Ε	f	λ_{cal}	Assignment
	(%)	(eV)		(nm)	
S_4	$H \rightarrow L + 1 (52.4\%)$	3.836	0.023	323.3	¹ LLCT/ ¹ MLCT
	$H-3 \rightarrow L(27.0\%)$				
S_5	$H \rightarrow L + 1 (33.5\%)$	3.845	0.026	322.4	¹ LLCT/ ¹ MLCT
	$H-3 \rightarrow L(31.6\%)$				
S_7	$H - 1 \rightarrow L + 1 (54.9\%)$	4.010	0.210	309.2	¹ MLCT/ ¹ LLCT/ ¹ IL
<i>S</i> ₁₁	$H - 3 \rightarrow L + 1 (44.6\%)$	4.247	0.099	291.9	¹ MLCT/ ¹ LLCT
	$H \rightarrow J \rightarrow L (13.8\%)$				
S ₁₇	$H-2 \rightarrow L+3$ (23.9%)	4.503	0.062	275.4	¹ MLCT/ ¹ ILCT
	$H - 5 \rightarrow L + 1 (22.7\%)$				
<i>S</i> ₁₈	$H - 1 \rightarrow L + 3$ (46.3%)	4.518	0.029	274.4	¹ LLCT/ ¹ MLCT
	$H-7 \rightarrow L(11.3\%)$				
S20	$H - 7 \rightarrow L(32.7\%)$	4.635	0.034	267.5	¹ ILCT/ ¹ MLCT
	$H-1 \rightarrow L+5 (19.8\%)$				
S ₃₂	$H - 8 \rightarrow L (66.0\%)$	4.950	0.065	250.7	¹ LLCT/ ¹ MLCT
	$H-9 \rightarrow L(28.3\%)$				
S35	$H{-}6{\rightarrow}L{+}2(34.2\%)$	5.040	0.060	246.0	¹ LLCT/ ¹ MLCT
S36	$H - 7 \rightarrow L + 1 (41.4\%)$	5.073	0.026	244.4	¹ MLCT
	$H{-}3{\rightarrow}L{+}5(13.4\%)$				
S39	$H-12 \rightarrow L(30.5\%)$	5.109	0.097	242.7	¹ LLCT
	$H - 13 \rightarrow L(17.3\%)$				
S40	$H - 3 \rightarrow L + 4 (24.6\%)$	5.132	0.050	241.6	¹ MLCT/ ¹ LLCT
	$H - 12 \rightarrow L (14.3\%)$				
S ₄₃	$H \rightarrow 2 \rightarrow L + 10 (16.7\%)$	5.195	0.037	238.7	¹ MLCT/ ¹ LLCT
	$H \!\rightarrow\! L \!+\! 10(12.4\%)$				

2	r
J	ι

State	Major contribution (%)	E (eV)	f	λ _{cal} (nm)	Assignment
<i>S</i> ₄	$H-3 \rightarrow L (59.5\%)$ $H-1 \rightarrow L+1 (24.4\%)$	3.826	0.054	324.0	¹ MLCT/ ¹ LLCT
<i>S</i> ₇	$H-1 \rightarrow L+1$ (56.5%) $H-3 \rightarrow L$ (15.7%)	4.002	0.205	309.8	¹ ILCT/ ¹ MLCT
S ₉	$H \to 2 (101.76)$ $H \to 3 \to L+1 (36.5\%)$ $H \to 5 \to L (15.5\%)$	4.233	0.075	292.9	¹ MLCT/ ¹ LLCT
S15	$H - 5 \rightarrow L + 1 (38.9\%)$	4.503	0.088	275.3	¹ ILCT/ ¹ MLCT
S ₁₇	$H-7 \rightarrow L (37.5\%)$ $H-1 \rightarrow L+4 (24.8\%)$	4.635	0.043	267.5	¹ ILCT/ ¹ MLCT
S ₂₇	$H - 7 \rightarrow L + 1$ (47.2%) $H - 3 \rightarrow L + 4$ (21.8%)	5.066	0.044	244.7	¹ ILCT/ ¹ MLCT
S ₂₈	$H-11 \rightarrow L (35.8\%)$ $H-12 \rightarrow L (25.4\%)$	5.084	0.063	243.9	¹ LLCT
S ₃₀	$H-3 \rightarrow L+3 (12.7\%)$ $H-3 \rightarrow L+4 (12.2\%)$	5.121	0.196	242.1	¹ MLCT/ ¹ LLCT
S31	$H \rightarrow L + 8 (26.1\%)$ $H - 2 \rightarrow L + 8 (22.2\%)$	5.128	0.103	241.8	¹ MLCT/ ¹ LLCT
S32	$H \rightarrow L + 5 (59.9\%)$	5.156	0.060	240.5	¹ MLCT/ ¹ LLCT
S33	$H \rightarrow L + \mathcal{B}$ (29.8%) $H - 6 \rightarrow L + 4$ (11.3%)	5.159	0.109	240.3	¹ MLCT/ ¹ LLCT
S ₃₇	$H - 3 \rightarrow L + 3 (40.6\%)$ $H - 3 \rightarrow L + 4 (30.5\%)$	5.283	0.081	234.7	¹ MLCT/ ¹ LLCT
S ₃₈	$H-1 \rightarrow L+5 (16.7\%)$ $H-6 \rightarrow L+2 (12.9\%)$	5.293	0.046	234.2	¹ LLCT/ ¹ MLCT
S39	$ \begin{array}{l} H-6 \to L+2 (26.5\%) \\ H-1 \to L+8 (18.9\%) \\ H-1 \to L+6 (15.3\%) \end{array} $	5.297	0.105	234.0	¹ LLCT/ ¹ MLCT
S ₄₁	$H-5 \rightarrow L+2 (37.1\%)$ $H-1 \rightarrow L+5 (30.8\%)$	5.366	0.056	231.1	¹ LLCT/ ¹ MLCT
S ₄₂	$H-5 \rightarrow L+2$ (34.5%) $H-9 \rightarrow L+1$ (22.9%)	5.374	0.035	230.7	¹ LLCT/ ¹ MLCT
S ₄₃	$H \rightarrow L + 5 (24.4\%)$ $H - 8 \rightarrow L + 2 (10.8\%)$	5.385	0.045	230.2	¹ LLCT/ ¹ MLCT
S ₄₄	$H \rightarrow L+6 (39.3\%)$ $H \rightarrow L+10 (13.2\%)$	5.397	0.067	229.7	¹ LLCT/ ¹ MLCT

4a	

State	Major contribution (%)	E (eV)	f	λ _{cal} (nm)	Assignment
<i>S</i> ₄	$H \rightarrow 3 \rightarrow L (51.5\%)$ $H \rightarrow L + 1 (34.8\%)$	3.382	0.044	323.6	¹ MLCT/ ¹ ILCT
<i>S</i> ₇	$H \to L+1 (49.6\%)$ $H-3 \to L (24.9\%)$	3.998	0.216	310.1	¹ MLCT/ ¹ LLCT
S ₈	$H - 3 \rightarrow L + 1 (65.7\%)$ $H - 7 \rightarrow L (18.1\%)$	4.213	0.025	294.3	¹ MLCT/ ¹ ILCT
Sg	$H{-}4 \rightarrow L (48.5\%)$	4.265	0.058	290.7	¹ LLCT

<i>S</i> ₁₁	$H{-}5 \rightarrow L(61.7\%)$	4.426	0.022	280.1	¹ ILCT/ ¹ MLCT
	$H-4 \rightarrow L(28.0\%)$				
S12	$H - 5 \rightarrow L + 1 (32.5\%)$	4.498	0.059	275.6	¹ ILCT/ ¹ MLCT/ ¹ LLCT
	$H - 7 \rightarrow L(20.6\%)$				
S13	$H - 7 \rightarrow L (40.8\%)$	4.672	0.058	265.4	¹ LLCT/ ¹ MLCT
	<u>$H-1 \rightarrow L+2(35.3\%)$</u>	4 500	0.000	250.0	
S ₁₄	$H - 2 \rightarrow L + 2 (89.8\%)$	4.790	0.020	258.8	¹ MLC1/ ¹ LLC1
S16	$H - 2 \rightarrow L + 4 (46.5\%)$	4.818	0.048	257.3	¹ MLCT
	$H - 2 \rightarrow L + 6 (25.9\%)$				
S ₂₂	$H{-}7{\rightarrow}L{+}1(52.1\%)$	5.069	0.103	244.6	¹ LLCT/ ¹ MLCT
S ₂₅	$H - 3 \rightarrow L + 2 (40.8\%)$	5.201	0.500	238.4	¹ MLCT
S26	$H-7 \rightarrow L+1 (23.2\%)$	5.216	0.133	237.7	¹ LLCT/ ¹ MLCT
	$H - 3 \rightarrow L + 2(14.9\%)$				
	$H \rightarrow L + 5 (13.1\%)$				
S29	$H \rightarrow L + 3 (69.8\%)$	5.324	0.107	232.9	¹ LLCT/ ¹ MLCT
	$H \rightarrow L + 5 (21.9\%)$				
S30	$H - 2 \rightarrow L + 6 (53.8\%)$	5.385	0.040	230.2	¹ MLCT
	$H - 2 \rightarrow L + 4 (31.0\%)$				
S ₃₂	$H - 2 \rightarrow L + 5 (65.4\%)$	5.419	0.040	228.8	¹ MLCT
S33	$H \rightarrow L + 5 (50.1\%)$	5.426	0.056	228.5	¹ LLCT/ ¹ MLCT
	$H \rightarrow L + 3 (13.7\%)$				
S36	$H-10 \rightarrow L(48.9\%)$	5.555	0.291	223.2	¹ ILCT/ ¹ MLCT
	$H - 5 \rightarrow L + 2$ (12.1%)				
S43	$H \rightarrow L + 7(24.1\%)$	5.810	0.136	213.4	¹ ILCT/ ¹ MLCT
	$H - 5 \rightarrow L + 2 (22.5\%)$				
S44	$H - 1 \rightarrow L + 4 (22.3\%)$	5.826	0.375	212.8	¹ MLCT/ ¹ LLCT
	$H - 1 \rightarrow L + 6 (21.3\%)$				
S49	$H - 7 \rightarrow L + 3 (53.9\%)$	5.926	0.059	204.4	¹ MLCT/ ¹ ILCT
	$H \rightarrow L + 7(18.1\%)$				

1a		Contribution (%)				Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	Me	P-(Ph) ₂ (C ₃ H ₅)	effect to minimum)
HOMO-1	-5.406	69	18	9	4	$d(Pt) + \pi(bzq)$
HOMO	-5.275	33	63	1	3	$\pi(bzq) + d(Pt)$
LUMO	-1.807	4	94	1	1	$\pi^*(bzq)$
16	1		Co	ntribution (%	b)	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	Me	S-(Me) ₂	effect to minimum)
HOMO-1	-5.527	88	7	3	2	d(Pt)
НОМО	-5.387	28	69	-	3	$\pi(bzq) + d(Pt)$
LUMO	-1.651	4	94	1	1	$\pi^*(bzq)$
20	!		Co	ntribution (%	b)	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	S-(Ph)	P-(Ph) ₃	effect to minimum)
HOMO-1	-5.527	16	75	1	7	$\pi(bzq) + d(Pt)$
HOMO	-5.387	6	7	3	84	$\pi(P-Ph_3)$
LUMO	-1.651	2	95	3	-	$\pi^*(bzq)$
21)		Со	ntribution (%	b)	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	S-(py)	P-(Ph) ₃	effect to minimum)
HOMO-1	-5.527	24	37	2	36	$\pi(bzq) + \pi(P-Ph_3) + d(Pt)$
НОМО	-5.387	9	8	3	81	$\pi(P-Ph_3)$
LUMO	-1.651	3	91	5	1	$\pi^*(bzq)$
3a	!		Co	ntribution (%	b)	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	<i>p-Me</i> C ₆ H ₄	S(Me) ₂	effect to minimum)
HOMO-1	-5.527	25	5	66	4	$d(Pt) + \pi(p-MeC_6H_4)$
HOMO	-5.387	22	76	-	2	$\pi(bzq) + d(Pt)$
LUMO	-1.651	2	96	2	-	$\pi^*(bzq)$
36	I		Co	ntribution (%	b)	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	<i>р-Ме</i> С ₆ Н ₄	P(Ph) ₂ (Me)	effect to minimum)
HOMO-1	-5.527	18	50	27	5	$\pi(bzq) + \pi(p-MeC_6H_4) + d(Pt)$
HOMO	-5.387	20	32	42	6	$\pi(p-MeC_6H_4) + \pi(bzq) + d(Pt)$
LUMO	-1.651	2	95	2	1	$\pi^*(bzq)$
30	2		Co	ntribution (%	b)	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	<i>р-Ме</i> С ₆ Н ₄	P(Ph)(Me) ₂	effect to minimum)
HOMO-1	-5.527	19	60	17	4	$\pi(bzq) + d(Pt) + \pi(p-MeC_6H_4)$
HOMO	-5.387	19	23	51	7	$\pi(p-MeC_6H_4) + \pi(bzq) + d(Pt)$
LUMO	-1.651	2	94	2	2	$\pi^*(bzq)$
40	ı		Co	ntribution (%	()	Orbital interpretation (from high
Orbitals	E (eV)	Pt	bzq	Ph	S-(Me) ₂	enect to minimum)
HOMO-1	-5.527	44	6	45	5	$d(Pt) + \pi(Ph)$
HOMO	-5.387	31	66	-	2	$\pi(bzq) + d(Pt)$
LUMO	-1.651	3	94	3	-	$\pi^*(bzq)$

Table S4. Molecular orbital contribution (%) in the triplet state for all complexes.

Table S5. Optical properties and Exciton generation fractions χ_T (%) of selected systems determined by TD-DFT level. All energetic values are in eV and the notations are defined as "p, v, g" respectively stands for phosphorescence, vertical, and gap.

Complex	ΔE_{gap}	E _{T1-n}	E _{T1-ver}	Es1-ver	E _{S1-T1}	E _g - E _{S1-ver}	E _g - E _{T1-ver}	$\delta_{S/}$	$\chi_T(\%)$
	——gap	-11-p	(eV)	(eV)	(an/ver)	-g -51-vei	-g -11-vei	δ / δ_T	•
		$(\mathbf{c}\mathbf{v})$	$(\mathbf{c}\mathbf{v})$	$(\mathbf{c}\mathbf{v})$	(gap/ver)				
1a	3.776	2.28	2.591	3.22	0.63	0.56	1.18	0.47	86.48
1b	3.736	2.35	2.568	3.20	0.63	0.53	1.17	0.46	86.79
2a	2.681	1.83	1.988	2.39	0.40	0.29	0.69	0.42	87.68
2b	3.265	1.84	2.569	2.95	0.38	0.32	0.70	0.45	86.89
3a	3.646	2.23	2.705	3.23	0.53	0.42	0.94	0.44	87.16
3b	3.717	2.22	2.850	3.35	0.50	0.37	0.87	0.42	87.63
3c	4.277	2.20	2.833	3.34	0.51	0.36	0.87	0.41	87.89
4a	3.857	2.23	2.852	3.36	0.51	0.50	1.01	0.49	85.85

1a			
Pt	0.38518	2.09012	6.84288
P	0.58265	2.27340	4.47287
N	2.32980	1.24559	7.42344
С	0.22079	2.14630	8.89056
С	-0.80807	2.62966	9.70215
H	-1.71783	3.03118	9.25143
С	-0.71729	2.61834	11.11195
H	-1.55180	3.00809	11.70251
С	0.40347	2.12016	11.75864
Н	0.46321	2.10751	12.85000
С	1.48287	1.62322	10.99380
С	1.37468	1.65510	9.57328
C	2.6/661	1.08618	11.59197
Н	2.74564	1.06549	12.68333
C	3.70545	0.60438	10.83287
Н	4.60229	0.19306	11.30323
C	3.03342	1 16006	9.39700
c	2.40925	1.10000	6.70302
U U	3 1689/	0.20101	5 58216
C	1 18751	0.02001	7 18249
н	5 24927	-0 17612	6 49640
C	4 65424	0 13672	8 55548
н	5.56109	-0.28796	8.99440
C	-1.56858	2.75500	6.64992
H	-2.20629	2.20159	7.35895
Н	-2.02009	2.61928	5.65132
Н	-1.63554	3.82938	6.90481
С	-0.04168	3.97576	3.93579
Н	-1.09687	4.00996	4.24229
Н	0.50092	4.66285	4.60900
С	0.13014	4.39676	2.50790
Н	1.16061	4.45424	2.13789
С	-0.87373	4.72839	1.68749
Н	-1.91820	4.68965	2.01318
Н	-0.68436	5.05468	0.66121
С	-0.39548	1.03893	3.49706
С	-0.53270	1.07970	2.09628
H	-0.04746	1.86715	1.51924
С	-1.29184	0.11280	1.43192
H	-1.39171	0.15762	0.34446
С	-1.92088	-0.90805	2.15301
Н	-2.51287	-1.66314	1.62977
С	-1.78895	-0.95850	3.54306
Н	-2.27715	-1.75216	4.11368
C	-1.03260	0.00924	4.21186
н	-0.93332	-0.02136	2.299/8
c	2.2/90/	2.241//	3.70920
U U	2 86357	1 07575	4.03001
Ċ	4 48745	3 26603	3 56027
н	5 16947	4 07483	3 83381
Ċ	4,92528	2.22717	2.73081
н	5.94933	2.22211	2.34996
Ċ	4.04492	1.19490	2.39730
H	4.37736	0.37677	1.75337
C	2.73097	1.20084	2.88110
H	2.05739	0.38608	2.61094

Table S6. The xyz coordinates of the optimized structure of our eight comp	olexes.
--	---------

1b			
Pt	1.93425	8.36869	2.87255
S	3.72222	9.30287	4.24491
С	0.38097	7.78515	1.72075
С	3.77687	8.38025	5.82471
Н	4.63597	8.72317	6.42007
Н	3.83658	7.29993	5.63376
Н	2.84085	8.60834	6.35240
С	5.32821	8.80088	3.52394
Н	6.14517	9.13163	4.18224
Н	5.40446	9.30517	2.55102
Н	5.35781	7.71250	3.37666
С	-1.93897	7.36911	0.08243
Н	-2.82041	7.20130	-0.54180
С	0.54905	12.66749	2.74523
Н	0.87625	13.62829	3.14582
С	-2.44564	9.82037	0.20007
Н	-3.33098	9.66654	-0.42349
С	-1.63699	8.67553	0.52952
С	-2.13399	11.07506	0.64427
Н	-2.76152	11.93105	0.38313
С	-1.11123	6.31596	0.44272
Н	-1.34508	5.30490	0.09657
С	-0.58862	12.56128	1.96103
Н	-1.18974	13.44285	1.72267
С	-0.16313	10.17996	1.80091
С	0.03100	6.51818	1.24901
Н	0.64662	5.65305	1.50164
С	-0.48162	8.85968	1.34079
С	1.29544	11.51078	3.02901
Н	2.19705	11.56324	3.64313
С	-0.97425	11.29739	1.46499
N	0.95827	10.30189	2.57598
С	2.67008	6.45273	3.01359
Н	1.91904	5.78589	3.47565
Н	2.89736	6.05322	2.00816
Н	3.59467	6.36266	3.61397

2a			
Pt	2.63927	4.63917	3.12572
Ν	1.07692	6.04716	3.49416
С	3.20179	5.31552	5.00534
C	4.2/5/8	4.99934	5.84177
С	J.01324 4 45884	4.2J393 5 61481	7 10172
н	5.31973	5.32520	7.71124
C	3.57441	6.56977	7.57492
Н	3.72273	7.04008	8.55026
С	2.46556	6.93912	6.78008
С	2.30387	6.30733	5.51460
С	1.18596	6.67897	4.70315
С	0.24202	7.64926	5.12932
Ч	-1 57556	8 68997	4.23907
C	-0.92096	7.29611	3.04122
H	-1.73485	7.50184	2.34467
С	0.05356	6.34620	2.68951
Н	0.03597	5.80585	1.73965
P	4.37920	3.16496	2.83314
S	1.75411	4.19515	0.89485
C	4.33806	1.98/80	1.39664
C	4.09956	0 61718	1 57081
C	4.54279	1.62274	-0.99762
Н	4.72038	3.55190	-0.05816
С	4.08557	-0.24438	0.46749
Н	3.92495	0.20900	2.56655
С	4.31075	0.25431	-0.81607
H	4.71134	2.02375	-1.99988
н	3.89587 4 30068	-1.30937	-1 67667
C	6.01640	4.00838	2.58718
C	6.15630	5.37088	2.89660
С	7.12448	3.31012	2.07033
С	7.38313	6.01648	2.71173
Н	5.29819	5.92553	3.27798
С	8.34904	3.95776	1.89074
Н	7.02835	2.25982	1./8/98 2.21326
н	7,47417	7.07787	2.95433
H	9.19952	3.40237	1.48788
Н	9.43876	5.81961	2.06648
С	4.59528	2.02277	4.28440
С	5.84991	1.58126	4.73362
С	3.43714	1.56449	4.93571
C u	5.94240	0.69639	5.81275
С	3 53267	0 67173	6 00622
Н	2.45787	1.91454	4.60328
С	4.78575	0.23704	6.44886
Н	6.92598	0.36734	6.15688
Н	2.62325	0.32307	6.50123
H	4.86095	-0.45398	7.29191
c	1.50089	7.92296	/.19800 c 41221
н	1 63733	8 39984	8 17260
H	-0.28657	9.01458	6.74703
С	0.83091	2.66803	0.94283
С	0.56975	2.00379	-0.27356
С	0.30976	2.10818	2.12703
С	-0.18391	0.82922	-0.30187
Н	0.96974	2.42037	-1.20079
с н	-0.43390	0.92000 2 61769	2.09322
C	-0.68995	0.27728	0.88083
H	-0.37147	0.33573	-1.25981
Н	-0.82854	0.51343	3.02729
H	-1.27613	-0.64452	0.85682

Pt3.478593.8172212.30641S5.534194.3476613.53092P2.115774.6509514.02988N4.601323.0451810.64625N4.971506.8160212.60921	
S 5.53419 4.34766 13.53092 P 2.11577 4.65095 14.02988 N 4.60132 3.04518 10.64625 N 4.97150 6.81602 12.60921	
P 2.11577 4.65095 14.02988 N 4.60132 3.04518 10.64625 N 4.97150 6.81602 12.60921	
N 4.97150 6.81602 12.60921	
C 1.92843 3.19521 11.07181	
C 3.82213 2.56018 9.65081	
C 2.40193 2.62598 9.85481	
C 2.13567 1.57729 7.64616	
н 1.46834 1.20154 6.88161	
C 5.82105 6.07854 13.30812	
C 1.17693 3.34038 14.93558	
C 2.74780 6.94143 15.59464	
C 2.90401 5.57022 15.42804	
C 1.30579 6.70530 12.34093	
н 2.31577 6.62881 11.96353	
C 4.36431 2.02226 8.47966	
C -0.85961 7.75164 12.28496	
C 1.14195 2.03727 14.44531	
н 1.65027 1.79383 13.52592	
C 0.44088 7.65123 11.81080	
н 0.78255 8.30300 11.01797	
C 0.88228 5.85443 13.36354	
H = 1.38363 2.79159 10.37324	
C -0.42478 5.96284 13.83306	
н -0.78670 5.30697 14.60979	
C 0.16767 2.19558 9.04698	
H -0.50465 1.82138 8.28618	
Н 3 82024 3 79925 16 23989	
C 3.46769 1.52414 7.46731	
Н 3.88898 1.10748 6.56201	
C 5.90803 3.01563 10.50945	
H 6.47994 3.41490 11.33131	
н 7.64384 6.00833 14.45500	
C 0.52829 3.61821 16.14424	
н 0.56993 4.61173 16.56762	
C 5.23166 8.11018 12.45344	
H 4.50429 8.66667 11.87268	
н 0.09068 3.64188 12.08742	
C 4.08791 6.88234 17.59056	
н 4.54628 7.38977 18.42929	
C 4.25321 5.51080 17.43060	
H 4.84442 4.94711 18.13965 C 5.76276 1.99963 8.35776	
н 6.21689 1.59073 7.46417	
C -0.19606 1.33292 16.31593	
н -0.72723 0.55638 16.85045	
C 6.53791 2.49682 9.37227	
H 7.01011 2.49899 9.31704 C -0 15773 2.62648 16.82408	
н -0.65434 2.86030 17.75629	
C 0.45698 1.04021 15.13098	
н 0.44237 0.03442 14.73363	
C 3.33899 7.59479 16.67140	
п 3.20003 8.00270 10.78330 С -1.29130 6.90441 13.29443	
н -2.30570 6.97113 13.66464	
C 7.22962 7.97794 13.71319	
Н 8.11430 8.42513 14.14950	
с 6.33536 8.75095 12.97259 Н 6.49263 9.80733 12.80842	

3 a			
Pt	1.94144	8.38413	2.86025
S	3.76459	9.35033	4.29778
С	0.39624	7.79258	1.68898
С	3.82881	8.42124	5.85238
Н	4.64934	8.79939	6.46049
Н	3.94790	7.36003	5.65099
Н	2.88542	8.59360	6.36649
С	5.36563	8.91463	3.56912
Н	6.16302	9.28535	4.21163
Н	5.42026	9.40724	2.60041
Н	5.43772	7.83829	3.43787
С	2.73185	6.51304	3.01353
С	3.68500	6.02351	2.11302
Н	4.00780	6.64384	1.28458
С	4.23351	4.74770	2.22597
Н	4.96572	4.42121	1.49570
С	3.85504	3.88604	3.24697
С	2.89981	4.35132	4.14919
Н	2.56818	3.70480	4.95505
С	2.35558	5.62270	4.03333
Н	1.60419	5.92341	4.75460
С	-1.89470	7.37549	0.04900
Н	-2.76294	7.20679	-0.57455
С	0.48716	12.65150	2.75935
Н	0.79444	13.60371	3.16536
С	-2.43646	9.80846	0.18828
Н	-3.30689	9.64844	-0.43463
С	-1.60715	8.67025	0.51336
С	4.43799	2.49778	3.37656
H	5.17349	2.30396	2.59475
H	3.66191	1.73191	3.29936
H	4.93424	2.36156	4.34115
С	-2.14826	11.04214	0.64012
Н	-2.77793	11.88541	0.38899
C	-1.06483	6.33/55	0.39518
Н	-1.28402	5.33859	0.03835
C	-0.63273	12.52674	1.9/499
Н	-1.24150	13.39112	1.74234
C	-0.1/368	10.1/846	1.79782
C	0.06739	6.33903	1.20467
н	0.08342	0.05200	1.44002
C	-0.4/303	0.00090 11 E0EE7	1.319/1
C II	1.23981 2 12596	11 57004	3.03094
п	2.12300 _0 00006	11 26020	3.04400
C N	-0.99000	10 31635	1.4/09/
TN	0.92004	TO . DT0DD	2.J/1/J

3 b			
D+	1 12616	3 70501	2 54026
гс Р	0 51184	5 53548	3 88097
N	3.24645	4.67858	1.72555
C	2.20525	2.17464	1.40654
C	3.69261	5.90155	1.89963
С	1.75568	6.55215	4.80425
С	-2.43687	1.01973	3.91099
С	-3.61863	0.17653	4.33116
С	-2.18820	8.45420	2.72268
С	2.75852	8.63186	5.51996
С	-2.51822	1.92077	2.85754
С	-1.20742	0.90920	4.55862
С	3.68956	7.93807	6.27607
C	-1.01584	7.72134 0.21064	0.76021
C	-1 96821	0.31904 8 53458	-0.23270
C	2 42069	-0.02050	0 36765
č	5.83668	3.27652	-0.52602
č	1.79496	7.94441	4.78988
C	4.86439	6.38550	1.31236
С	5.59014	5.53897	0.51294
С	2.70752	5.86337	5.56182
С	-1.41932	2.68379	2.46876
С	-0.48671	6.74423	2.91008
С	5.35107	2.03486	-0.70003
С	-1.45371	7.56715	3.49362
C	-0.17989	2.58931	3.10995
C	-0.28419	6.82830	1.53307
C	-0.11411	1.6683U	4.10/51
C	-0.80090	0 89216	1 18510
C	3 66132	6 54900	6 29636
C	3.42084	2.50746	0.75135
C	4.12286	1.60950	-0.06934
С	5.13960	4.22845	0.30372
С	3.94973	3.83494	0.93257
Н	0.80985	0.57055	1.64576
Н	2.01060	-1.01311	0.22556
Н	4.12020	-0.39088	-0.88012
Н	5.87947	1.32751	-1.32600
H	6.75633	3.58489	-1.00557
Н	6.50541 5 17511	5.8/343	0.04143
п	3.1/JII 3.1110/	6 54772	2 53720
н	-1 54369	3 36732	1 63688
Н	-3.45464	2.03378	2.32236
Н	-4.53079	0.49474	3.82445
Н	-3.45935	-0.87892	4.09308
Н	-3.79430	0.24396	5.40764
Н	-1.10031	0.21268	5.38371
Н	0.82013	1.53116	4.69967
Н	-0.07132	4.28349	5.86019
Н	-0.87553	5.86351	5.87833
H	-1.48759	4.53797	4.84075
H	2.71119	4.78083	5.56929
H U	4.38839 A A3750	3.99832 8 17160	0.0//9/ 6 8//53
п	4.43/JO 2 77585	9 71350	5 49545
н	1.08027	8.50502	4.20557
H	-2.93549	9.08092	3.19082
Н	-2.54411	9.22519	0.75158
Н	-1.64255	7.52274	4.55663
Н	0.43932	6.18287	1.05547
Н	-0.84574	7.77021	-0.30681

3c			
Pt	4.28093	7.96526	3.09049
P	6.04233	9.44269	3.88060
Ν	5.52881	6.29180	2.35007
С	2.82396	6.65191	2.46125
С	5.56960	11.16048	4.33487
С	3.33999	5.44054	1.92836
С	7.17677	9.78687	1.35337
С	3.13646	3.20191	0.92662
С	8.18494	10.04560	0.43588
С	6.83622	6.16908	2.32753
С	4.47205	3.05086	0.89352
C	1.44367	6./6368	2.4/944
C	4.77000	5.2/135	1.8844/
C	2.908/1	9.32841	3.72809
C	7 45220	11.23/30	4.62945
c	5 3/166	1 09/89	2.72090
c	0 61165	5 73787	1 99887
C	2 52482	4 40342	1 44627
c	1 46358	11 25862	3 32459
C	7,49620	5.03584	1.84717
C	2.39909	9.31641	5.03059
С	-0.04846	12.24909	5.09451
С	6.73915	3.99535	1.36942
С	1.13121	4.57287	1.48919
С	1.45879	10.24554	5.47111
С	6.80538	8.82485	5.43897
С	2.40068	10.33313	2.88930
С	9.48807	10.24089	0.87100
С	8.76602	9.93251	3.14478
С	9.77722	10.18153	2.22675
H	1.10267	12.01209	2.63216
Н	2.73819	10.39275	1.86092
H	2.72889	8.55582	5.72929
Н	1.09594	10.18616	6.49139
Н	-0.96093	12.19782	4.49481
H	-0.32638	12.07920	6.13555
H	0.33552	13.269/5	5.01553
н	J.103/9 4 70500	11.0001/	5.40030 E 10049
п u	4.79J90 6.44313	11.13417	J.10040 / 69773
н	5 99709	8 67600	6 15612
н	7 29075	7 86314	5 27089
н	7.52321	9.52723	5.86361
Н	6.16718	9.61926	1.00212
Н	10.27615	10.43658	0.15604
Н	9.01666	9.89692	4.19555
Н	10.79108	10.33197	2.57323
Н	7.95179	10.08731	-0.61958
Н	0.98029	7.65681	2.87149
Н	-0.46282	5.87174	2.03373
Н	0.48125	3.78864	1.12329
Н	2.49143	2.41369	0.56047
Н	4.91873	2.14586	0.50337
Н	7.21103	3.09987	0.98561
H	8.57532	5.00080	1.85578
H	7.41215	7.00318	2.69563

4 a				
	4 30005	5 63063	7 64604	
Pt	4.73037	5.67967	7.64604	
C	5.45962	2.57266	/.3/149	
H	4.5/691	2.52085	6./5153	
C II	0.22U01 5.00001	1.42440	7 16010	
н	3.92301	0.48407	7.10810	
C	7.33589	1.53158	8.40110	
Н	7.95081	0.66481	8.60/16	
C	7.00120 - 0330E	2.1/498	0.94927	
U	0.03293	2.98230	9.79288	
п	9.40044	4 20226	10.01027	
U U	0 0751 <i>6</i>	4.20220	10.20/03	
п	9.9/J10 8 27157	4.34019 5 3//01	10.919/3 9 997/0	
C	0.2/1J/ 8 5/622	5.54401 6.62467	10 50660	
U U	9 /1035	6 77933	11 139/3	
Ċ	7 70930	7 66690	10 19194	
н	7 91862	8 65503	10.58315	
C	6 58213	7 48355	9 37104	
н	5 95842	8 33799	9 15589	
C	6 26595	6 24446	8 84335	
c	7 14320	5 17841	9 18008	
C	6.85653	3.86863	8.65564	
C	3.92344	7.54737	7.55630	
C	4.29080	8.47061	6.56469	
Ĥ	5.04426	8.19833	5.83454	
C	3.73194	9.74193	6.49147	
Н	4.04930	10.42300	5.71033	
С	2.77878	10.14554	7.41593	
Н	2.34418	11.13564	7.36353	
С	2.40135	9.25974	8.41533	
Н	1.66747	9.55978	9.15434	
С	2.96509	7.99013	8.48153	
Н	2.65695	7.33319	9.28680	
С	2.85398	5.72547	4.64543	
Н	2.03862	5.35970	4.02300	
Н	3.80038	5.57764	4.12921	
Н	2.72479	6.77867	4.87994	
С	1.31323	5.14381	6.90544	
Н	1.23087	6.21410	7.07466	
Н	1.25808	4.61623	7.85552	
Н	0.52228	4.78966	6.24587	
N	5.76068	3.74818	7.87216	
S	2.92132	4.74741	6.16964	