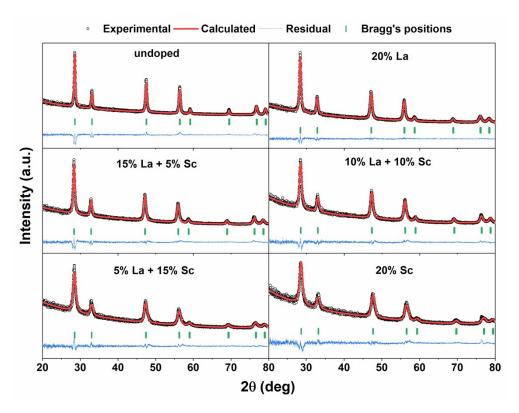
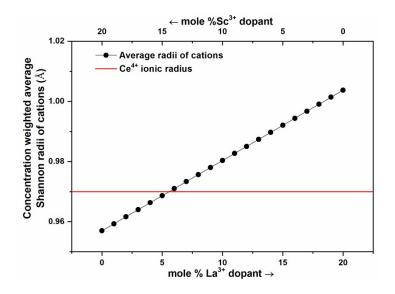
Modulating the Effective Ionic Radii of Trivalent dopants in Ceria by Combination of Dopants for Improving Catalytic Efficiency towards Water Splitting Reactions

Debarati Das,^{1,2} Jyoti Prakash,^{2,3} Anisha Bandyopadhyay,^{2,4} Annu Balhara,^{1,2} U.K. Goutam,⁵ Raghunath Acharya,^{1,2} Santosh K. Gupta,^{1,2,*} and Kathi Sudarshan^{1,2,#}


¹Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

²Homi Bhabha National Institute, Anushaktinagar, Mumbai – 400094, India

³ Materials Science Group, Bhabha Atomic Research Centre, Mumbai-400085, India


⁴Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India

⁵Technical Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India

S1. Rietveld Refinement and Williamson-Hall Analysis:

Figure S1: Rietveld refined XRD patterns of the undoped, doped and codoped CeO₂ nano-powders

Figure S2: Concentration weighted Shannon radii of cations in the doped ceria samples.

S1.1. Methodology of Williamson-Hall analysis:

In Williamson-Hall approach, based on uniform deformation model, broadening of the X-ray diffraction peak is calculated considering independent contribution from crystallite size and lattice strain using the following equation.

$$\beta_{hkl} cos\theta_{hkl} = \frac{K\lambda}{D} + 4\varepsilon sin\theta_{hkl}$$

Where, β_{hklis} expressed as: $\sqrt{(\beta_{sample}^2 - \beta_{instr}^2)}$, the instrumental broadening corrected FWHM (in radians) of a given XRD peak fitted using a gaussian profile, K is a constant equal to 0.9, wavelength λ for Cu K_a is 1.5406 Å, D is crystallite size and ε is themicro-strain. Instrumental broadening is calculated from the selected peak widths of the XRD pattern of LaB₆standard. Strain and crystallite size were calculated respectively from the slope and intercept of the linear plot of $\beta_{hkl}cos\theta_{hklvs}$, $4sin\theta_{hkl}$.

Table S1: Rietveld refinement fitting parameters and estimated crystallite size of the undoped, doped and codoped CeO₂ catalysts:

Dopant(s)	Rietveld refined lattice parameter (Å)	Unite cell volume (Å ³)		Crystallite size from WH analysis (nm)
Undoped	5.412 (1)	158.49(1)	$\chi^2 = 3.39$ $R_p = 5.95$ $R_{wp} = 8.35$ $R_{exp} = 4.54$	30

(Number in the parenthesis denotes the uncertainty in the least significant digit)

20% Sc	5.397(1)	157.24(2)	$\chi^2 = 2.04$ $R_p = 4.67$ $R_{wp} = 6.31$ $R_{exp} = 4.42$	13
15% Sc + 5% La	5.425(1)	159.70(1)	$\begin{split} \chi^2 &= 1.65 \\ R_p &= 4.16 \\ R_{wp} &= 5.45 \\ R_{exp} &= 4.25 \end{split}$	19
10% Sc + 10% La	5.435(1)	160.58(2)	$\chi^{2} = 2.05 R_{p} = 4.52 R_{wp} = 6.11 R_{exp} = 4.35$	16
5% Sc + 15% La	5.448(1)	161.73(2)	$\chi^{2} = 2.62 R_{p} = 5.29 R_{wp} = 7.43 R_{exp} = 4.41$	21
20% La	5.455(1)	162.29(1)	$\chi^2 = 1.43$ $R_p = 3.97$ $R_{wp} = 5.11$ $R_{exp} = 4.28$	25

S2. Neutron Activation Analysis and TEM morphological studies:

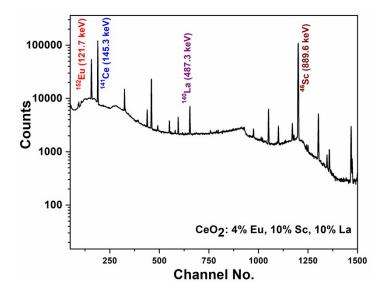


Figure S3: Typical gamma ray spectrum of neutron irradiated Sc, La codoped CeO_2 spiked with 4% Eu.

S3. Positron Annihilation Lifetime Spectroscopy:

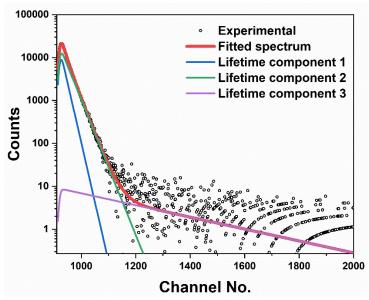


Figure S4: A typical fitted positron lifetime spectrum of 10% Sc + 10% La codoped ceria catalyst

S4. X-ray photoelectron spectroscopy:

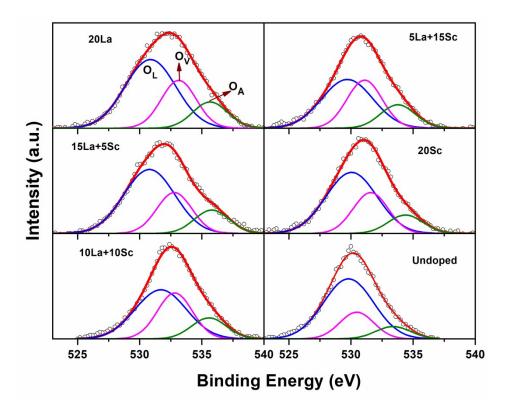


Figure S5: Fitting of O-1s XPS spectra of the ceria catalysts S5. Electrochemical Studies:

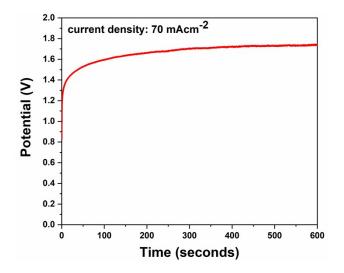


Figure S6: Chronopotentiometric stability test of the best performing 15% Sc+ 5% La doped catalyst towards OER.