Supporting Information 5-steps algorithm to accelerate the prediction of [Au₂₅(SR)₁₉]^z clusters (z=1-, 0, 1+)

A. Tlahuice-Flores^{a*}

^a Universidad Autónoma de Nuevo León, CICFIM,-Facultad de Ciencias Físico-Matemáticas, San Nicolás

de los Garza, Nuevo León, 66455, México; tlahuicef@gmail.com

Fig. S1. Inner cores of all calculated isomers of $Au_{25}(SR)_{19}$ ^[z] cluster (z= 0, 1-, 1+). Colour code: Gold adatoms are shown in yellow; core gold atoms are shown in orange colour; chlorine atoms in green; sulphur atoms in red colour. First row stands for core size; second row shows relative energy values; third row indicates the number of octahedra and tetrahedra; four row provides with number of compact tetrahedra and last row indicates the symmetry displayed by each inner core.

CHLORIDE-PROTECTED CLUSTERS

NEUTRAL/ PBE

1.Au₁₃ 0.0 eV <u>2 0</u> + 8 T 3 compact T C1

2.Au₁₂ 0.014 eV 15 T 9 compact T Cs

3.Au₁₂ 0.38 eV <u>1 0</u> + 6 T 6 compact T C5v

4.Au₁₁ 0.53 eV <u>1 0</u> + 5 T 4 compact T C1

NEUTRAL/ TPSS

1a. Au₁₃ 0.0 eV <u>2 0</u> + 10 T 5 Compact T Cs

2a.Au₁₂ 0.039 eV 25 T 22 Compact T Cs

3a.Au₁₁ 0.91 eV 10 T 7 Compact T C1

1j. Au₁₄ 0.0 eV 20+10T 7 Compact T **C1**

2j.Au₁₅ 0.2 eV <u>40</u>+9T **3** Compact T **C1**

Cs

ANIONIC/ TPSS

1k.Au₁₄ 0.0 eV 2 O + 15 T 9 Compact T **C1**

NEUTRAL/ PBE

2k.Au₁₈ (obtained from opt. of Au₁₁) 2 O + 23 T 19 Compact T **C1**

C1

0.48 eV 25 T 21 Compact T **C1**

-H PROTECTED CLUSTERS

0.0 eV <u>10</u> + 5 T **3** Compact T Cs

2b.Au₁₂ 3b.Au₁₁ 0.12 eV 0.19 eV 11 T 18 T 6 Compact T 8 Compact T

4b.Au₁₂ 5b.Au₁₂ 0.22 eV 0.26 eV 19 T 13 T 10 Compact T 8 Compact T C2v C2v

6b.Au₁₃

0.60 eV <u>20</u>+5T 1 Compact T **C1**

NEUTRAL/ TPSS

1b.Au₁₁

1c.Au₁₂ 0.0 eV 1 O + 10 T 6 Compact T **C2**

C1

0.026 eV 24 T 15 compact T C5v

Cs

3c.Au₁₂ 0.13 eV 25 T 12 Compact T C5v

4c.Au₁₃ 0.16 eV 2 O + 9 T 4 Compact T **C1**

5c.Au₁₁ 0. 17 eV 8 T 7 Compact T **C1**

ANIONIC/ TPSS

1g.Au₁₂ 0.0 eV 23 T 16 compact T C5v

0.19 eV <u>10</u> + 16 T 11 compact T C1

3g.Au₁₄ 0.25 eV <u>3 0</u> + 13 T 5 compact T C2

-CH₃ PROTECTED CLUSTERS

4g.Au₁₃ 0.34 eV <u>1 0</u> + 8 T 5 compact T C1

5g.Au₁₁ 0.96 eV <u>1 0</u> + 10 T 5 Compact T C1

NEUTRAL/ PBE

0.0 eV

Cs

10+5T

4 compact T

0.14 eV

19 T

C₂v

4d.Au ₁₃
1.24 eV
<u>1 0</u> + 2T

1 compact T C1

NEUTRAL/ TPSS

12 compact T 7 compact T

C1

ANIONIC/ TPSS

1i.Au₁₁ 0.0 eV 20 T 18 compact T C2v

0.43 eV <u>2 0</u> + 14 T 9 compact T C1

-H PROTECTED CLUSTERS

3i.Au₁₃ 0.62 eV <u>2 0</u> + 9 T 1 compact T C1 4i.Au₁₁ 0.69 eV <u>2 0</u> + 7 T 6 compact T Cs

CATION/ PBE

6a.Au12 0.0 eV 18 T 12 compact T C_{2v}

6b.Au11 0.31 eV 1 O + 5 T 3 compact T C₁

CATION/ TPSS

7a.Au12 0.0 eV 22 T 12 compact T C_{2v}

7b.Au11 0.17 eV 11 T 3 compact T C₁

-CH₃ PROTECTED CLUSTERS

CATION/ PBE

8a.Au12 0.0 eV 21 T 10 compact T C_{2v}

0.53 eV 4 T 4 compact T C₁ **Fig. S2.** All calculated isomers of $Au_{25}(SR)_{19}$ ^[z] cluster (z=0,1-, 1+) displaying comprising tetrahedra (red planes) and octahedra (green planes). Colour code: Gold adatoms are shown in yellow; core gold atoms are shown in orange color; chlorine atoms in green; sulphur atoms in red colour. Under each figure is indicated the number of constituting octahedra and tetrahedra. Same order is giving as in Fig. S1.

NOTES:

Counting of polyhedra (tetrahedra or octahedra) edges considers bond lengths as larger as 3.4 Å. Compact tetrahedra have edges with bond lengths included in the range from 2.6 to 3.2 Å.

ALGORITHM

- **1.** Sort isomers according to number of tetrahedra with bond lengths included in the range from 2.6 to 3.4 Å.
- Form sets with isomers displaying same type of polyhedra (i.e all containing tetrahedra or combination of tetrahedra and octahedra).
- 3. Calculate T factor= (#O + #T)/#cT, where O stands for octahedra, T for tetrahedra and cT for compact tetrahedra found in the inner core. Sometimes is necessary to consider long bond distances to avoid division by zero.
- 4. Use factor values to sort between sets. Make a general consideration that more tetrahedra is better.

Trend in energy is large T-factor value corresponds with energy minimum.

In each subgroup more stable isomer has large number of tetrahedra, for example, isomer including 25 T is more stable than isomer including 10 T.

20 + 10 T was moved toward left side given its large T-factor value. It seems that T-factor value has more weight in deciding the energy order than the number of tetrahedra in the full structure.

Minimum has the large T-factor value.

Isomers constituted by 1 octahedron form one subgroup (highlighted in cyan color) Isomers comprised by 2 or more Octahedra form second subgroup (red color) Third set is formed by isomer containing only tetrahedra.

More stable isomer is contained in the group holding a large T-factor value. Conclusion: Energy order is given as decrement of T-factor value.

More stable isomer has large T-factor value.

GENERAL CONCLUSION. For chloride-protected the energy order is consistent with **decrement** of T-factor values, independently of charge-state [z= 0, 1-] and XC functional.

Minimum corresponds with an isomer with small T-factor value being part of a subgroup. Energy order is given in terms of **increment of T-factor values**.

NEUTRAL/ TPSS

Isomer constituted by 8 T occupies the last place because there are isomers with more Tetrahedra. Minimum **has small** T-factor value.

Inside its subgroup (cyan color), structure constituted by 10 + 10T has a smaller factor value.

Isomers with same number of tetrahedra, have different number of compact tetrahedra in their inner cores. More stable has 4 T more than others and less stable displays longer edges.

Minimum corresponds with smaller T-factor value.

In subgroup formed by isomers including 1 octahedron, reordering of isomers with similar number of tetrahedra (8 and 10).

In general, energy order goes from small to large T-factor values.

GENERAL CONCLUSION. For SH-protected the energy order is consistent with **increment** of T-factor values, independently of charge-state [z= 0, 1-] and XC functional.

-CH₃-PROTECTED

Minimum has compact tetrahedra constituting its inner core (around 2.88 Å)

	STEPS			
			ISOMERS ENERGY ORDER	
1.	19 T	8 T	<mark>1 O + 5 T</mark>	1 O + 2 T
2.	12	6	4	1
3.	1.58	1.33	<mark>1.5</mark>	3
4.	<mark>1 O + 5 T</mark> (<mark>1.5</mark>)	19 T (<mark>1.58</mark>)	8 T (<mark>1.33</mark>)	<mark>1 O + 2 T (3</mark>)

Small to large values of T-factor in each subgroup gave the correct energy order.

NEUTRAL/ TPSS

Isomer constituted by 1 O + 10 T has a T-factor value of 11 then it is changed to last place. In this case, it is evident the energy order. Increment in T-factor value corresponds with less stability. Minimum has smaller factor value. It means that for this ligand XC functional and charge-state the energy order is given as increment in the T-factor value.

2.	12	1	<mark>2</mark>
3.	1.5	7	7
4.	18 T (<mark>1.5</mark>)	<mark>1 O + 4 T</mark> (7)	10 O + 6 T <mark>(</mark> 7)

Minimum has smaller T-factor value.

Energy order is given by increment in T-factor value. In this case, smaller T-factor value corresponds with minimum.

GENERAL CONCLUSION. For SCH₃-protected the energy order is consistent with **increment** of T-factor values, independently of charge-state [z= 0, 1-] and XC functional.

CATIONIC H-PROTECTED

Minimum has smaller T-factor value and many compact tetrahedra in the inner core.

PBE

GENERAL CONCLUSION. For cationic SH-protected, the energy order is consistent with **increment** of T-factor values, independently of XC functional.

CATIONIC CH₃-PROTECTED

4 T

Minimum has larger T-factor value.

GENERAL CONCLUSION. For cationic SCH₃-protected isomers, the energy order is consistent with **decrement** of T-factor values, with PBE XC functional.

Fig. S3. Comparison of UV and CD spectra of **second in energy isomer** (PBE) and the **energy minimum** (TPSS optimization) of $Au_{25}(SCH_3)_{19}^{[0]}$ cluster. Black lines correspond with PBE calculations and red lines are lineshapes of optimized isomer with TPSS functional. UV spectra show major coincidence in position and intensity of their peaks. However, CD spectra show differences in the range from 1.0 to 2.0 eV. Three peaks included in mentioned energy range correspond with featured by enantiomers (1.55, 1.71, and 1.92 eV). Peaks located at 0.60, and 3.36 eV are common to both isomers. First inner core corresponds with Au_{11} core and C_{2v} symmetry, calculated with PBE functional. This comparison allows us to know about XC-functionals effect on optical and chiroptical properties. (2d, 1e)

Fig. S4. Comparison of UV and CD spectra of <u>a pair</u> of $Au_{25}(SCH_3)_{19}^{[0]}$ clusters optimized with PBE and TPSS XC functionals. Black lines correspond with **PBE** calculations and red lines are lineshapes of optimized isomer with **TPSS** functional. Absorption spectra display a peak width of 0.1 eV. The isomer constituted by one Au_{11} inner core and sustaining C_s symmetry is found as second in energy during TPSS calculations, but it corresponds with the energy minimum during PBE calculations. Their UV spectra show differences in intensity. However, their CD spectra feature major coincidence along lineshapes. This comparison is done to get insight into **XC functionals effect on optical and chiroptical properties**. (1d, 2e)

Fig. S5. Comparison of calculated UV and CD spectra of **anionic** isomers comprised by one Au₁₁ inner core (C_{2v} symmetry) and protected by -CH₃ ligands. Anionic/**PBE** (Black line; C_{2v} point group), anionic/**TPSS** (Red line; C_{2v}) clusters. Absorption spectra display a peak width of 0.1 eV. This comparison let us get insight into the **XC functional effect on optical and chiroptical properties**. Both isomers are constituted by 12 tetrahedra. For anionic clusters, is obtained large coincidences in their UV spectra and slightly different CD spectra. (1h, 1i)

Fig. S6. Comparison of calculated UV and CD spectra of isomers comprised by one Au_{11} inner core with 0 and 1charge-states and protected by -CH₃ ligands. **Neutral/PBE** (Black line; C_s point group) and **anionic/PBE** (Red line; C₁) clusters. Absorption spectra display a peak width of 0.1 eV. The anionic cluster displays peaks under 2.0 eV, while neutral cluster features peaks in agreement with experimental values. First inner core corresponds with neutral/PBE case. It is evident that for this kind of isomers, anionic structure shows less tetrahedra. This comparison let us get insight into **the charge-state effect on optical and chiroptical properties**. (1d, 2h)

Fig. S7. Comparison of calculated UV and CD spectra of isomers comprised by one Au₁₁ inner core with 0, 1- and 1+ charge-states and protected by -CH₃ ligands. Neutral/PBE (Black line; C_s point group), anionic/PBE (Red line; C₁) and cationic/PBE (Blue line; C₁) clusters. Absorption spectra display a peak width of 0.1 eV. The anionic cluster displays peaks under 2.0 eV, while neutral cluster features peaks in agreement with experimental values. First inner core corresponds with neutral/PBE case. This comparison let us get insight into the **charge-state effect on optical and chiroptical properties**. Inner cores displaying tetrahedra (red color) and octahedra (green color) constituting Au₁₁ inner cores. It is evident that cationic cluster holding one Au₁₁ core is more distorted and only tetrahedra are found. (1d, 2h, 8b)

Fig. S8. Comparison of calculated UV and CD spectra of isomers comprised by one Au₁₁ inner core (C_{2v} symmetry) and protected by -CH₃ ligands. Neutral/PBE (Black line; C_{2v} point group), anionic/PBE (Red line; C_{2v}) clusters. Absorption spectra display a peak width of 0.1 eV. This comparison let us get insight into the **charge-state** effect **on optical and chiroptical properties**. It is evident that despite change in their charge-state, this pair of isomers show similar UV and CD spectra. Both isomers are constituted by 12 tetrahedra. (2d, 1h)

Minimum

120

Au	-2.232520	-0.072528	1.387264
Au	-4.814965	0.304602	-3.193674
Au	6.852988	-2.182759	-0.874854
Au	-1.013753	-2.538769	0.446681
S	6.318054	-4.043826	0.413575
S	3.491736	-0.576171	-2.670087
Au	-4.067746	-2.722591	-1.341525
Au	-1.974519	-0.344869	-1.408526
Au	-2.420373	2.821503	-3.262582
Au	1.032987	-1.898850	2.194198
Au	1.559283	-2.786828	-0.394403
Au	0.639331	-0.257092	0.048444
Au	3.913143	-0.926171	-0.369221
S	-0.650458	2.473782	3.512322
Au	0.202129	1.975890	-1.506202
Au	0.130358	2.157986	1.277358
Au	2.563109	1.730315	-0.120082
S	4.269265	-1.057280	1.957029
Au	-4.455841	0.110029	-0.268629
Au	-2.535306	2.100649	-0.300644
Au	1.192461	-0.884782	-2.847642
S	-3.121601	4.352781	0.203051
Au	-0.850013	4.792491	0.026898
Au	3.526691	1.077313	2.556368
S	1.343245	5.475962	-0.315876
S	3.366142	3.299207	3.266236
Au	2.278845	4.304516	1.461749
S	4.547568	2.913492	-0.797397
Au	6.015154	1.224643	-1.380680
Au	0.641564	0.600770	4.008964
S	1.651842	-1.464959	4.433425
S	7.541934	-0.356842	-2.123036
S	-0.143206	3.176504	-3.518672
S	-4.734616	2.626682	-3.173168
S	-5.101328	-1.999662	-3.301851
S	-2.986517	-3.828892	0.398293
S	-1.034717	-1.249295	-3.422045
S	-2.490521	-0.756734	3.658769
S	-6.813715	0.177507	0.020615
Au	-4.127997	-2.293341	3.100195
Au	-6.411508	-1.802594	1.164961
S	-5.864584	-3.704543	2.406387
S	2.231962	-4.693334	-1.662690
Au	4.254237	-4.318263	-0.597722
C	-2.481762	-5.418522	-0.366735
н	-1.809899	-5.926556	0.335054

н	-3.383295	-6.021760	-0.523589
н	-1.972112	-5.254973	-1.321024
С	-6.892854	-2.229311	-2.985581
н	-7.439700	-1.836455	-3.850026
н	-7.080335	-3.303357	-2.878720
н	-7.203489	-1.705644	-2.076939
С	0.366286	2.060764	-4.882925
н	0.111468	2.551044	-5.830017
н	1.450668	1.919055	-4.812244
н	-0.133448	1.090882	-4.816111
С	-5.272228	3.135307	-4.855287
н	-6.343833	2.921833	-4.942865
н	-5.097857	4.213233	-4.950777
н	-4.720311	2.597061	-5.629803
С	-1.164462	-3.071578	-3.331373
н	-2.223009	-3.338867	-3.440720
н	-0.576482	-3.497765	-4.152200
н	-0.782943	-3.431446	-2.370170
С	4.188193	-1.994967	-3.588583
н	3.939577	-1.861380	-4.647758
н	5.276525	-1.980595	-3.451498
н	3.785861	-2.944003	-3.222761
С	6.067543	-0.763730	2.201807
н	6.219549	-0.537055	3.263040
н	6.600495	-1.683736	1.936156
н	6.419289	0.064959	1.578624
С	7.358175	-5.401178	-0.255174
н	8.394880	-5.211126	0.044968
н	7.009754	-6.339310	0.190687
н	7.286474	-5.456274	-1.344462
С	9.150478	0.123146	-1.380436
н	9.881213	-0.657334	-1.620602
н	9.455498	1.071551	-1.836136
н	9.068592	0.239861	-0.296663
С	4.009410	3.591316	-2.413822
н	3.186782	4.288379	-2.213984
н	4.854479	4.118485	-2.871282
н	3.665092	2.786128	-3.070309
С	1.358478	7.240024	0.190782
н	2.399736	7.581412	0.185605
н	0.776594	7.806521	-0.544924
н	0.929293	7.371626	1.187725
C	5.097713	3.860706	3.031061
н	5.136444	4.932961	3.255528
н	5.733665	3.309324	3.732049
н	5.422976	3.683160	2.001056
С	-3.498614	4.271128	1.993463
Н	-3.506039	5.290065	2.397017
н	-4.494411	3.823984	2.098318

н	-2.762204	3.656262	2.522881
С	-0.007028	4.007943	4.269157
н	-0.350106	4.849912	3.655553
н	-0.431808	4.080098	5.277428
н	1.084157	4.008989	4.320114
С	-7.015975	1.448052	1.329777
н	-6.836747	2.425777	0.867025
н	-8.042901	1.397911	1.709622
н	-6.305716	1.288630	2.145816
С	- 7.088114	-3.734567	3.776053
н	-8.036537	-4.109897	3.376072
н	-6.714085	-4.419590	4.545731
н	-7.233647	-2.739872	4.204430
С	-3.504699	0.574596	4.412684
н	-3.882762	0.210744	5.374045
н	-2.848828	1.440102	4.559960
н	-4.338496	0.843242	3.757452
С	0.434581	-2.354086	5.479687
н	0.692882	-3.419273	5.461563
н	0.522436	-1.968293	6.502078
н	-0.584135	-2.203308	5.110126
С	1.461454	-6.093685	-0.758878
н	0.422609	-6.171589	-1.097572
н	2.004283	-7.011402	-1.011304
н	1.484233	-5.924253	0.320725

<mark>lso2</mark> 120

Au	-2.345625	0.659563	1.059104
Au	-2.287880	3.414070	2.934211
Au	1.186010	4.172966	2.636258
Au	2.225025	1.707010	0.650556
Au	0.557972	-1.820568	2.333995
Au	-3.425355	-1.950888	1.677331
Au	-4.533595	0.025519	-1.013193
Au	-1.628487	1.366618	-1.750599
Au	0.068963	1.077204	2.621767
Au	1.112225	-0.565072	5.976839
Au	0.861338	-4.960408	2.117860
Au	0.668659	- 2.691363	-0.704261
S	-3.836279	1.691513	2.680036
S	-0.822248	5.205757	3.221170
S	3.290380	3.342069	2.092118
S	-5.444563	-1.301604	0.693083
S	-3.829242	1.546104	-2.646944
S	-1.605965	-2.519162	3.008825
S	0.515038	1.410724	4.944499

S	1.566409	-2.480174	7.202352
S	1.843361	-4.615050	0.050693
С	-5.265432	2.414947	1.791825
Н	-4.950822	2.882092	0.855319
н	-5.961878	1.596672	1.575940
С	-0.681172	5.468322	5.029352
н	-1.667791	5.750796	5.413106
н	-0.323815	4.567562	5.536852
С	3.779786	2.326913	3.535034
н	2.920599	1.788286	3.943545
Н	4.534598	1.604456	3.195957
C	-2.024914	-1.500017	4.463099
Н	-2.973026	-1.868619	4.870321
Н	-1.222242	-1.617142	5.204594
C	-6.135225	-2.788412	-0.111610
Н	-5.349759	-3.343657	-0.636785
С	-3.706494	0.596016	-4.205940
н	-3.248446	1.253404	-4.955727
н	-3.071273	-0.283270	-4.068186
С	-1.062217	1.794799	5.791602
н	-1.728546	0.928519	5.821756
Н	-0.827372	2.122638	6.810542
С	3.389840	-2.626125	7.307624
Н	3.864047	-2.537162	6.326944
Н	3.748943	-1.829909	7.969061
С	1.242991	-6.027721	-0.947485
Н	1.664326	-5.932788	-1.954793
Н	1.612088	-6.948009	-0.480270
Au	2.560876	-0.390153	-1.328439
Au	2.340601	-3.086546	-3.389360
Au	-1.083611	-3.953444	-2.975299
Au	-1.990207	-1.565404	-0.840172
Au	1.098394	1.964931	-2.032119
Au	4.373107	2.087161	-1.466622
Au	4.245535	-0.333634	1.051235
Au	0.129952	0.000297	0.011874
Au	0.095564	-0.946774	-2.723984
Au	-0.292325	1.774839	-4.715481
Au	-0.776145	4.327809	-2.487207
Au	-0.451231	2.796017	0.506614
S	4.074934	-1.706963	-2.672853
S	0.780449	-4.611559	-4.199429
S	-3.078554	-3.496494	-1.864196
S	2.946689	3.344739	-2.812047
S	5.867772	0.882952	-0.131662
S	2.910123	-1.941773	2.063643
S	-0.051511	-0.501957	-5.058314
S	-0.490889	4.085043	-4.779830
S	-1.195876	4.922816	-0.296010

С	4.980530	-2.777096	-1.492857
н	4.297002	-3.214405	-0.757534
н	5.727446	-2.154140	-0.986886
С	0.387866	-4.081036	-5.906196
н	1.295429	-4.180839	-6.512550
н	0.026613	-3.047227	-5.923548
С	-4.153160	-2.901532	-3.224355
Н	-3.581128	-2.326988	-3.956831
н	-4.932164	-2.258128	-2.792542
С	3.343746	2.810865	-4.518177
н	4.264256	3.318472	-4.828458
н	2.513097	3.112198	-5.167737
С	6.558251	2.128043	1.015269
н	7.078469	1.603329	1.824197
н	5.766526	2.770154	1.418177
С	3.525217	-2.016765	3.776055
H	3.053287	-2.888048	4.250242
н	3.257688	-1.111484	4.336962
C	1.675843	-0.582750	-5.670218
H	1.962811	-1.638935	-5.743076
н	2.351215	-0.081792	-4.971845
C	-2.183654	4.361494	-5.433904
H	-2.925364	3.821610	-4.837134
н	-2.210307	4.018607	-6.474306
C	-3.023428	4.809036	-0.228634
H	-3.318440	4.892560	0.825757
н	-3.368850	3.854225	-0.637171
н	-5.745144	3.156412	2.440986
н	0.030004	6.286493	5.189717
н	4.200994	2.987902	4.301393
н	-2.114894	-0.447788	4.171555
н	-6.564395	-3.416388	0.677634
н	-6.920676	-2.475235	-0.808440
н	-4.711052	0.298384	-4.525691
н	-1.554543	2.603287	5.231077
н	3.622442	-3.602964	7.746201
н	0.150803	-6.043040	-1.003475
н	5.478651	-3.570039	-2.062166
н	-0.390182	-4.749918	-6.290931
н	-4.607486	-3.771277	-3.712813
н	3.485870	1.728034	-4.571620
н	7.271353	2.737533	0.448276
н	4.613351	-2.140890	3.740757
н	1.718906	-0.104886	-6.655315
н	-2.387616	5.437281	-5.390750
н	-3.444236	5.640117	-0.805589
н	1.739296	-7.029196	4.602760
н	0.306698	-7.345417	5.636375
С	0.648219	-7.093604	4.626161

н	0.304964	-7.857263	3.919464
Au	0.823383	-3.969724	5.588884
S	-0.133548	-5.502541	4.142316

<mark>lso3</mark> 120

Au	-1.615736	-0.190111	2.086721
Au	-4.508687	1.745377	-2.484075
Au	3.280492	-2.840754	0.797634
Au	-0.357314	-2.775306	-0.769107
Au	-3.441343	-1.846805	-2.990722
Au	-1.753620	0.509004	-2.434729
Au	- 2.131361	4.100478	-3.049846
Au	0.574630	-2.110284	1.670412
Au	2.088596	-1.410881	-1.357237
Au	-0.026128	0.050878	-0.304837
Au	2.424156	-0.049496	1.073484
Au	0.033113	2.776317	-1.630303
Au	0.483748	2.492313	0.979171
Au	2.401084	1.552521	-1.278954
Au	-2.684857	-1.184372	-0.315391
Au	- 2.464199	1.579061	-0.023862
Au	0.657386	-0.705860	-4.056888
Au	-2.295653	4.601400	0.834135
Au	3.640902	2.877001	1.159958
Au	1.122468	5.321545	0.093800
Au	4.915513	-0.694531	-1.515747
Au	0.800444	0.645633	3.608754
Au	-2.214656	-2.060396	4.612917
Au	-2.987269	-3.721805	2.392051
Au	1.203236	-4.946229	1.283517
S	3.163069	-4.627578	2.506574
S	2.161809	-2.410853	-3.553123
S	0.781656	2.953818	3.309177
S	4.072971	1.007139	2.484821
S	-3.639884	2.875047	1.585064
S	-0.903709	6.400243	0.436807
S	3.375002	4.777120	-0.161833
S	4.445820	1.366290	-2.490028
S	0.893542	-1.647475	4.047461
S	5.179253	-2.864785	-0.748443
S	0.052899	3.920439	-3.793422
S	-4.296673	4.067816	-2.245323
S	-5.251010	-0.379039	-3.077210
S	-1.785876	-3.461684	- 2.889518
S	-0.957186	0.844708	-4.666624
S	-2.553782	0.210920	4.269141
S	-4.145972	-2.844152	0.601394
S	-2.246231	-4.402789	4.515941

_			
S	-0.678308	-5.159436	-0.040423
С	4.342048	-5.869379	1.850522
С	3.705281	-2.000828	-4.452978
С	-0.827885	3.503948	3.979312
С	5.695735	0.407138	1.894553
С	-5.364272	3.158056	1.048655
С	-1.412885	7.104031	-1.172689
С	4.216186	6.112295	0.777274
С	5.671703	2.526173	-1.786978
С	2.646411	-1.892270	4.514071
С	6.639900	-2.908887	0.352804
С	0.934441	5.496865	-3.497402
С	-5.373146	4.718081	-3.583744
С	-6.353380	-0.905447	-1.713679
С	-1.068147	-3.605649	-4.561133
С	- 2.121814	-0.027559	-5.776452
С	-4.362105	0.259102	3.964283
С	-4.351980	-4.227388	-0.572839
С	-0.515302	-4.984006	4.424185
С	-0.012595	-6 .02 7936	-1.512892
н	4.027453	-6.867222	2.175924
н	5.329421	-5.642921	2.271703
н	4.390384	-5.831805	0.758031
н	3.553567	-2.259269	-5.507689
н	4.514419	- 2.605981	-4.029479
н	3.951048	-0.939681	-4.359624
н	-1.041585	4.497306	3.567503
н	-0.737950	3.556296	5.070573
н	-1.624785	2.805459	3.708338
н	6.463144	1.147259	2.147918
н	5.676566	0.229559	0.808976
н	5.899899	-0.533558	2.419227
н	-5.883818	2.193692	1.092875
н	-5.402030	3.557373	0.031826
н	-5.821305	3.863853	1.751981
н	-0.668040	7.851498	-1.468118
н	-2.387752	7.583522	-1.028635
н	-1.500796	6.321221	-1.939117
н	4.035809	7.059307	0.255557
н	5.290063	5.890595	0.787347
н	3.839664	6.170935	1.801789
н	5.370177	3.540418	-2.070825
н	6.650755	2.283595	-2.215482
н	5.699778	2.457634	-0.693453
н	2.817646	-2.965567	4.646142
н	2.815703	-1.357814	5.455367
н	3.309609	-1.501557	3.735170
н	7.542626	-2.817974	-0.262101
н	6.639161	-3.876087	0.868606

н	6.611621	- 2.102681	1.089692
н	0.542628	6.261192	-4.177516
н	1.993228	5.310453	-3.713931
н	0.842825	5.826275	-2.455243
н	-5.196984	5.797522	-3.658003
н	-6.416370	4.529807	-3.304120
н	-5.149477	4.238028	-4.539935
н	-6.746182	-1.896320	-1.967269
н	-7.176239	-0.185338	-1.649449
н	-5.812278	-0.955160	-0.763791
н	-1.836832	-3.995765	-5.238496
н	-0.226910	-4.305794	-4.495271
н	-0.684417	-2.643707	-4.924664
н	-1.626571	-0.203565	-6.738050
н	-2.988610	0.629029	-5.916595
н	-2.454913	-0.977440	-5.340144
н	-4.590872	1.233873	3.518394
н	-4.872910	0.154934	4.927958
н	-4.667904	-0.545836	3.289243
н	-4.820405	-3.842238	-1.486866
н	-5.000992	-4.968198	- 0.0 91668
н	-3.385168	-4.676263	- 0.819916
н	-0.518281	-5.990795	3.993409
н	-0.118650	-5.011473	5.445440
н	0.095301	-4.319465	3.806456
н	-0.750656	-5.911626	-2.315895
н	0.115084	-7.088035	-1.267532
н	0.943641	-5.595904	-1.824482

lso4 **120** -0.428863 -1.201169 -3.065733 Au Au -1.109837 -1.666750 1.987455 1.430014 -2.555692 -1.574430 Au -1.808320 2.931004 0.171102 Au Au 0.858599 2.079365 -0.639293 Au 4.292463 2.215598 -0.502535 Au -1.167196 2.166721 4.456055 Au 2.097500 -4.536199 0.418947 Au -1.355832 1.428340 -2.315706 Au 2.705827 -0.215778 -0.931379 0.604111 -3.817092 Au 3.261518 -3.967148 1.547200 2.261766 Au -0.475235 1.150187 1.774874 Au Au 4.932723 -0.582270 1.155269 0.962878 3.706030 2.412475 Au Au -1.524900 -3.944371 -2.348343 -4.028897 2.612626 -2.508560 Au

Au	-3.361731	-3.015468	0.493881
Au	0.611724	-0.434312	3.742072
Au	-2.821726	-0.021504	-4.682718
Au	1.468128	1.533756	-3.642568
Au	1.635232	-1.700816	1.366519
Au	-2.855200	0.402792	-0.341460
Au	-0.210631	-0.539184	-0.456281
Au	2.470222	0.961991	1.658465
S	-3.209173	3.080632	3.815311
S	-0.315066	3.036279	-3.852236
S	3.417562	0.318435	-3.274777
S	0.304208	-5.419080	1.586996
S	-4.923969	0.006266	0.798028
S	0.669138	-2.523601	5.177700
S	-1.090030	-1.411846	-5.353572
S	-4.778183	1.063387	-4.064981
S	-3.598620	4.280294	-0.967545
S	3.796564	-1.904933	2.671036
S	3.751433	-3.555102	-0.920709
S	2.552388	3.755119	-0.654145
S	0.722091	1.281680	5.486944
S	0.647027	-4.604656	-2.811427
S	-3.730222	-3.679294	-1.696536
S	6.192486	0.903118	-0.117274
S	-0.596777	4.827367	1.135374
S	2.834382	2.638068	3.312749
S	-3.230137	-2.451700	2.747224
С	-4.257409	2.784407	5.292708
С	-1.064950	2.901315	-5.511825
C	3.237551	-1.226452	-4.238200
С	0.886332	-6.972545	2.374449
С	-6.180866	0.953309	-0.144007
С	2.367364	-2.573660	5.847496
C	0.097938	-0.424998	-6.336111
С	-5.255294	2.069747	-5.520436
С	-2.535890	5.467178	-1.869719
С	4.555046	-3.569542	2.654754
С	4.079962	-4.820471	-2.197070
С	2.695382	4.514164	-2.310318
С	0.023284	0.404876	6.935872
С	0.909758	-4.388892	-4.606609
С	-4.381085	-2.160417	-2.475211
С	6.578062	0.015109	-1.670677
С	-1.766366	5.798260	2.141580
С	4.272489	3.651725	2.810937
С	-2.920756	-4.022146	3.639498
Н	-5.278947	3.093403	5.044354
Н	- 3.869184	3.402327	6.110295
н	-4.246130	1.730197	5.581408

ы.	0 222665	2 17/271	6 270079
ш	-0.322005	3.174371	-5 5/1603
	1 1/15122	1 997/69	-5.541005
п Ц	2 20/6/1	1.007400	-3.091770
	3.334041	-0.993037	-5.250521
	2.245/52	-1.009010	-4.005145
	4.005437	-1.930148	-3.894340
	0.939551	-7.742451	1.596017
н	0.1512/2	-7.201207	3.134246
н	1.867746	-6.840811	2.83/48/
н	-6.459059	0.359023	-1.022496
н	-5./8/638	1.919123	-0.474971
н	-7.054124	1.098082	0.501902
н	2.581258	-3.583128	6.215283
н	2.418603	-1.858769	6.6///62
н	3.093013	-2.285356	5.077997
н	-0.391826	-0.078447	-7.252633
н	0.933075	-1.087871	-6.591369
н	0.479116	0.425737	-5.755784
н	-5.533439	1.383100	-6.327685
н	-4.431774	2.712083	-5.844354
н	-6.116814	2.684464	-5.236956
н	-3.169419	6.103293	-2.498201
н	-1.797566	4.938865	-2.483953
н	-2.009516	6.077365	-1.125724
н	5.484250	-3.521168	3.234449
н	4.752344	-3.909131	1.634984
н	3.842616	-4.251399	3.137502
н	4.661902	-4.349210	-2.999272
н	3.133882	-5.205552	-2.598267
н	4.659116	-5.642964	-1.762489
н	3.525957	5.229158	-2.272724
н	1.753616	5.033421	-2.519181
н	2.873166	3.759705	-3.084238
н	0.841759	-0.147322	7.413592
н	-0.761110	-0.297667	6.641265
н	-0.372214	1.148850	7.636084
н	0.436925	-5.227721	-5.130227
н	1.990354	-4.397168	-4.797416
н	0.472830	-3.448508	-4.959203
н	-4.477758	-2.336567	-3.552237
н	-3.711081	-1.311082	-2.291892
н	-5.365164	-1.951892	-2.040442
н	7.011424	0.734465	-2.374108
н	5.673576	-0.425347	- 2.099901
н	7.307913	-0.765052	-1.428830
н	-2.652660	5.997083	1.525324
н	-1.273599	6.740183	2.408725
н	-2.067006	5.254386	3.040396
н	5.167331	3.026885	2.916261

н	4.331867	4.510048	3.490069
н	4.180065	3.995393	1.776895
н	-3.889824	-4.505947	3.809402
н	-2.447180	-3.780690	4.597863
н	- 2.266681	-4.682277	3.062779