Engineering a Sustainable cadmium sulfide/polyethyleneimine-functionalized biochar/chitosan Composite for Effective Chromium Adsorption: optimization, co-interfering anions, and mechanism

Abdelazeem S. Eltaweil ^{1,2}, Nouf Al Harby ^{3,*}, Mervette El Batouti ² and Eman M. Abd El-Monaem ²

- ¹ Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Sultanate of Oman, (A.S.E) (abdelazeemeltaweil@alexu.edu.eg)
- ² Department of Chemistry, Faculty of Science, Alexandria University 21934, Alexandria, Egypt, (E.M.A) (emanabdelmonaem5925@yahoo.com), (M.E.) (Mervette.elbatouti@ alexu.edu.eg).
- ³ Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia (N.F.A.) (hrbien@qu.edu.sa).
- * Correspondence: N.F.A. (hrbien@qu.edu.sa).

Model	Equation	
Langmuir	$q_e = \frac{q_{max} K_L C_e}{1 + K_L C_e}$	(1)
Freundlich	$q_e = k_F C_e^{1/n}$	(2)
Temkin	$q_e = \frac{RT}{b_T} \ln k_T C_e$	(3)

Table S1. Non-linear equations of the applied adsorption isotherm models.

Where, q_e and C_e are the adsorption capacity and the concentration of the un-adsorbed Pb(II) at equilibrium, respectively. q_{max} and k_L are the monolayer adsorption capacity and Langmuir constant, respectively. n and k_F are Freundlich constants. k_T is the equilibrium binding constant and b is Temkin constant related to heat of adsorption.

Kinetic Model	Equation	
PFO	$q_t = q_e \left(1 - e^{-k_1 t}\right)$	(4)
PSO	$q_t = rac{t k_2 q_e^2}{1 + t k_2 q_e}$	(5)
Elovich model	$q_t = \frac{1}{\beta} ln(\alpha\beta t + 1)$	(6)

Table S2. Non-linear equations of the applied adsorption kinetic models.

Where, q_t and q_e are adsorbed amounts of Cr^{VI} at time t and equilibrium, respectively. k_1 and k_2 are the rate constants of PFO and PSO, respectively. Furthermore, α and β are Elovich coefficients that represent the initial adsorption rate and the desorption coefficient, respectively, also related to the extent of surface coverage and activation energy for chemisorption.