Electronic Supplementary Information (ESI)

Influences of Solvents and Monomer Concentrations on the Electrochemical Performance and Structural Properties of Electrodeposited PEDOT Films: A Comparative Study in Water and Acetonitrile

Yang Zhang,^a Linze Li^{*a} and Bingwei He^{*a}

^a School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.

*Corresponding authors: E-mail: lzli@fzu.edu.cn; mebwhe@fzu.edu.cn

Fig. S-1 Equivalent circuits. (a) Model A using for the PEDOT electrodes deposited at 1 mM concentration; (b) Model B using for PEDOT electrodes deposited at other concentrations. Therein, R_s represented the solution resistance, R_{ct} signified the charge transfer resistance, Z_{CPE} standed for the constant phase element, Z_w indicated the Warburg impedance, C_d symbolized the capacitance. And the impedance of the CPE is sufficiently described as $Z_{CPE}=1/(Y_0(j\omega)^n)$, where Y_0 is the parameter containing the capacitance information, ω is angular frequency and *n* is a constant ranging from 0 to 1.

	18	able S-1 Nyq	uist curve i	itting results		
Solvent	EDOT Concentration (mM)	Circuit Model	$R_s(\Omega)$	$R_{ct}(\Omega)$	$Y_0(\mathrm{Fs}^{\mathrm{n-1}})$	n(0 <n<1)< td=""></n<1)<>
Water	1	Model A	77.9	4.44×10^{4}	1.56×10 ⁻⁵	0.809
Acetonitrile	1		81.8	2.16×10^{5}	3.13×10 ⁻⁵	0.919
Solvent	EDOT Concentration (mM)	Circuit Model	$R_s(\Omega)$	$R_{ct}(\Omega)$	$Z_w(\Omega)$	C_d (F)
Water	5	Model B	109.4	717.4	1450.0	3.22×10 ⁻⁵
	10		101.2	238.3	589.8	9.34×10 ⁻⁵
	15		100.2	204.5	326.5	1.16×10 ⁻⁴
	20		90.5	202.8	308.9	1.76×10 ⁻⁴
Acetonitrile	10		75.7	97.6	136.0	3.66×10 ⁻⁴
	20		77.6	93.6	120.0	7.52×10 ⁻⁴
	50		64.9	78.7	98.7	1.71×10 ⁻³
	100		60.7	72.4	96.9	2.17×10 ⁻³

Table S-1 Nyquist curve fitting resu	lt
--------------------------------------	----

Fig. S-2 Comparison of (a) infrared and (b) Raman spectra before and after EDOT polymerization

Fig. S-3 UV-visible absorption spectroscopy after PEDOT electrodeposition in (a) water and (b) acetonitrile at different monomer concentrations.

Fig. S-4 The open circuit potential detected in water and acetonitrile