Supporting Information

Highly Sensitive AIEE Active Fluorescent Probe for Detection of Deferasirox: Extensive Experimental and Theoretical Studies

Kainat Khurshid^a, Sohail Anjum Shahzad^{a,*}, Mohammed A. Assiri^{b,c}, Alam Shabbir^a, Tayyeba Javid^a, Hasher Irshad^a

^a Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan

^b Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

^c Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia

* **Corresponding author:** Sohail Anjum Shahzad, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.

E-mail addresses: sashahzad@cuiatd.edu.pk & sohail_chem@yahoo.com (S. A. Shahzad)

Table of Contents

SI-1. Instruments and reagents	. 3
Fig. S 1 . Jobs plot of sensor MPT- DFX complex in H ₂ O:THF (9:1, v/v)	. 3
Fig. S 2. The emission response of sensor MPT towards DFX before and after adding some	
common interferences	. 4
Fig. S 3. Photostability test of probe MPT	. 4
Fig. S 4. (a) Effect of pH and (b) Effect of temperature on the relative fluorescence quenching of	of
sensor MPT towards DFX	. 5

Fig. S 5. (a) Relative fluorescence quenching of MPT for DFX in the time interval of $8 - 48$
hours and (b) Relative fluorescence quenching of MPT for DFX in the time interval of $10-60$
sec
Fig. S 6. UV- <i>Vis</i> . absorbance of MPT-DFX
Fig. S 7. UV- <i>Vis</i> absorbance and fluorescence emission of sensor MPT in THF solution (10 μ M)
Fig. S 8. The absorbance of DFX and emission spectra of MPT7
Fig. S 9. Optimized geometries of sensor MPT (a) Site I MPT -DFX (b) Site II MPT -DFX (c)
Site III MPT-DFX
Figure S 10. Electron density difference image of MPT-DFX Complex
Fig. S 11. Bright fluorescence of MPT (a) before adding DFX and, (b) after adding DFX
Fig. S 12. (a) Fluorescence relative emission of sensor MPT in plasma and (b) Real water sample. 9
Fig. S 12 Fluorescence quenching observed in spiked artificial urine samples Error! Bookmark not defined.
Table. S 1. (a) The quantum yield of MPT in different water fractions and with DFX (b)
Comparison of sensor MPT with already reported DFX sensors
Table. S 2. QTAIM analysis of MPT-DFX 11
Table. S 3. Spike and recovery experiment for detection of DFX in plasma
Table. S 4. Spike and recovery values for DFX detection in real water samples
Table S 5. Spike and recovery values for the detection of DFX in artificial urine samples 13
References:
SI-2. NMR spectra of the synthesized compoundError! Bookmark not defined.

SI-1. Instruments and reagents

The sensor **MPT** was characterized by performing ¹H NMR at 400 MHz, ¹³C NMR and DEPT-135 at 100 MHz with the help of Bruker Avance III NMR spectrometer employing CDCl₃ as solvent and the reference compound was TMS (tetramethylsilane). NMR titration experiments were carried out in CDCl₃. The spectrofluorometer (FluoroMax-Plus-P-C, Horiba Jobin Yvon Technology, USA) was used to record the fluorescence emission spectra. The fluorescence studies were performed on solutions of sensor **MPT** in HPLC grade THF in order to detect the anticipated analyte. All chemicals and reagents, purchased from Daejung Chemicals & Metals (Korea), Oakwood Chemicals (USA), Sigma Aldrich (USA), and Alfa Aesar (UK), were employed directly without any further purification. Reagents and chemicals included diphenylacetic acid, potassium thiocyanate, 3,4 dimethoxyaniline, THF, dichloromethane, methanol, sodium bicarbonate, and distilled water. The plasma (P9523, MDL number: MFCD00131920) was purchased from Sigma Aldrich (USA).

Fig. S 1. Jobs plot of sensor **MPT-DFX** complex in H_2O :THF (9:1, v/v)

Fig. S 2. The emission response of sensor MPT towards DFX before and after adding some common interferences

Fig. S 3. Photostability test of probe MPT

Fig. S 4. (a) Effect of pH and (b) Effect of temperature on the relative fluorescence quenching of sensor **MPT** towards DFX

Fig. S 5. (a) Relative fluorescence quenching of **MPT** for DFX in the time interval of 8 - 48 hours and (b) Relative fluorescence quenching of **MPT** for DFX in the time interval of 10 - 60 sec.

Fig. S 6. UV-Vis. absorbance of MPT-DFX

Fig. S 7. UV-Vis absorbance and fluorescence emission of sensor MPT in THF solution (10 µM)

Fig. S 8. The absorbance of DFX and emission spectra of MPT

Fig. S 9. Optimized geometries of sensor **MPT** (a) Site I **MPT**-DFX (b) Site II **MPT**-DFX (c) Site III **MPT**-DFX

Figure S 10. Electron density difference image of MPT-DFX Complex

Fig. S 11. Bright fluorescence of MPT (a) before adding DFX and, (b) after adding DFX

Fig. S 12. (a) Fluorescence relative emission of sensor **MPT** in plasma and (b) Real water sample (c) Fluorescence quenching observed in spiked artificial urine samples

Water	Quantum Yield	DFX	Quantum
Fraction		Concentration(µM)	Yield
10	0.075	-	-
20	0.086	10	0.137
30	0.098	20	0.112
40	0.11	30	0.091
50	0.117	40	0.075
60	0.123	50	0.061
70	0.128	60	0.05
80	0.134	70	0.042
90	0.137	80	0.037
95	0.092	90	0.034
99	0.078	100	0.033

Table. S 1 (a). The quantum yield of MPT in different water fractions and with DFX

Table. S 1 (b). Comparison of sensor MPT with already reported DFX sensors

Sensor	LOD	Phenomenon	Reference
Carbamothioyl based sensor	175 nMFluorescence(0.2 μM)quenching		This work
Carbon dots probe and Cu ²⁺ as medium	0.33 μg/mL (330 μM)	Fluorescence quenching	[1]
Dopamine-conjugated carbon dots	600 ng/mL (600 μM)	Fluorescence quenching	[2]

Carbon dots and Cu ²⁺ -catalyzed oxidation of <i>o</i> -phenylenediamine	0.38 mg/mL (0.38 M)	Fluorescence quenching	[3]
"ON-OFF-ON" sensor for sequential detection of Fe ³⁺ and deferasirox	0.14 ppm	Fluorescence enhancement	[4]
Poly(Allylaminehydrochloride)- Templated Copper Nanoclusters	0.1 μg/mL	Fluorescence quenching	[5]

Table. S 2. Spike and recovery experiment for detection of DFX in plasma

Spiked (µM)	Recovered (µM)	Recovery (%)	RSD (%)
10	10.4	104	1.21
20	19.7	98.5	1.18
30	30.6	102	1.26
40	41.4	103.5	1.2
50	51.8	103.6	1.29

Table. S 3. QTAIM analysis of MPT-DFX

BCPs	MPT-	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	-V/G	Eint
	DFX	(a.u)	(a.u)	(a.u)	(a.u)	(a.u)		(kcal/mol)
1	SH	0.005	0.017	0.003	-0.002	-0.00106	0.68	-0.722

2	S H	0.006	0.020	0.004	-0.003	0.00108	0.72	-0.878
3	HC	0.004	0.011	0.002	-0.001	-0.00058	0.50	-0.314
4	ОН	0.025	0.076	0.020	-0.021	-0.00108	1.05	-6.589
5	СН	0.006	0.021	0.004	-0.003	-0.00112	0.75	-0.941
6	00	0.010	0.046	0.010	-0.009	-0.00132	0.90	-2.823
7	CN	0.004	0.012	0.002	-0.002	-0.00049	1.00	-0.628
8	ОН	0.028	0.094	0.023	-0.023	-0.00003	1.00	-7.216
9	НО	0.013	0.042	0.010	-0.009	-0.00052	0.90	-2.824
10	СО	0.009	0.028	0.006	-0.005	-0.00081	0.83	-1.569
11	CN	0.004	0.011	0.002	-0.002	-0.00050	1.00	-0.628
12	NH	0.006	0.020	0.004	-0.003	-0.00089	0.75	-0.941
13	СН	0.007	0.021	0.004	-0.003	-0.00099	0.75	-0.941
14	CC	0.006	0.019	0.004	-0.003	-0.00093	0.75	-0.941

Table. S 4. Spike and recovery values for DFX detection in real water samples

Spiked (µM)	Recovered (µM)	Recovery (%)	RSD (%)
20	19.8	99	1.24
40	40.5	101.3	1.2
60	60.9	101.5	1.32

80	81.3	101.6	1.29
100	102	102	1.17
120	121.2	101	1.19

Table S 5. Spike and recovery values for the detection of DFX in artificial urine samples

Spiked (µM)	Recovered (µM)	Recovery (%)	RSD (%)
2	1.99	99.5	0.52
4	3.96	99	0.45
6	5.87	97.8	0.4
8	7.93	99	0.35
10	9.48	94.8	0.32
12	11.79	98	0.29
14	13.92	99	0.28
16	15.89	99	0.3
18	17.9	99	0.35
20	19.73	98	0.4

References:

- [1] W. Han, C. Miao, X. Zhang, Y. Lin, X. Hao, Z. Huang, S. Weng, X. Lin, X. Guo, J. Huang, A signal-off fluorescent strategy for deferasirox effective detection using carbon dots as probe and Cu²⁺ as medium, Anal. Chim. Acta, 1179 (2021) 338853, https://doi.org/10.1016/j.aca.2021.338853.
- [2] C.-C. Wang, P.-T. Huang, H.-S. Kou, S.-M. Wu, Cu²⁺-induced quenching and recovery of the luminescence of dopamine-conjugated carbon dots for sensing deferasirox in plasma, Sens. Actuators B Chem., 311 (2020) 127916, https://doi.org/10.1016/j.snb.2020.127916.
- [3] C.-F. Miao, X.-Z. Guo, X.-T. Zhang, Y.-N. Lin, W.-D. Han, Z.-J. Huang, S.-H. Weng, Ratiometric fluorescence assay based on carbon dots and Cu²⁺-catalyzed oxidation of Ophenylenediamine for the effective detection of deferasirox, RSC Adv., 11(55) (2021) 34525-34532, https://doi.org/10.1039/D1RA07078A.
- [4] A.Y.A. Alzahrani, K.O. Khan, S. Rafique, H. Irshad, A.M. Khan, S.A. Shahzad, Theoretical and experimental studies on mechanochromic triphenylamine based fluorescent "ON-OFF-ON" sensor for sequential detection of Fe³⁺ and deferasirox, Spectrochim. Acta A Mol. Biomol. Spectrosc., 297 (2023) 122745, https://doi.org/10.1016/j.saa.2023.122745.
- [5] H.-J. Lin, C.-C. Wang, H.-S. Kou, C.-W. Cheng, S.-M. Wu, Stable Luminescent Poly (Allylaminehydrochloride)-Templated Copper Nanoclusters for Selectively Turn-Off Sensing of Deferasirox in β-Thalassemia Plasma, Pharmaceuticals, 14(12) (2021) 1314, https://doi.org/10.3390/ph14121314.

SI-2. NMR spectra of the synthesized compound

BRUKER

230

......

210

