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SIESTA and GOLLUM Codes

All calculations in this work were carried out by the implementation of DFT in the SIESTA code. 1 DFT have been used to obtain 

the optimized geometries of molecules and to carry out the iso-surfaces calculations to investigate their electronic properties 

using Gaussian 2 software at the B3LYP level of theory 3 with 6-31G** basis set. 4,5 SIESTA is an acronym derived from the 

Spanish Initiative for Electronic Simulations with Thousands of Atoms. GOLLUM is a program that computes the charge, spin 

and electronic contribution to the thermal transport properties of multi-terminal junctions. In contrast to a non-equilibrium 

Green's function (NEGF) codes, GOLLUM is based on equilibrium transport theory. All, theories and computational methods 

and procedures are shown in Figure S2.

The optimized geometry, ground state Hamiltonian and overlap matrix elements of each structure were self-consistently 

obtained using the SIESTA implementation, of the density functional theory (DFT). SIESTA employs norm-conserving pseudo-

potentials to account for the core electrons and linear combinations of atomic orbitals to construct the valence states. The 

generalized gradient approximation (GGA) of the exchange and correlation functional is used with a double-ζ polarized (DZP) 

basis set, a real-space grid defined with an equivalent energy cut-off of 250 Ry. The geometry optimization for each structure 

is performed to the forces smaller than 20 meV/Å.  The mean-field Hamiltonian obtained from the converged DFT calculation 

was combined with GOLLUM 6 implementation of the non-equilibrium Green’s function method to calculate the phase-

coherent, elastic scattering properties of the each system consist of left gold (source) and right gold (drain) electrodes and 

the scattering region. The transmission coefficient T(E) for electrons of energy E (passing from the source to the drain) is 

calculated via the relation: 

                             (1)𝑇(𝐸) = 𝑇𝑟{Γ𝑅(𝐸)𝐺𝑅(𝐸)Γ𝐿(𝐸)𝐺𝑅 † (𝐸)}

In this expression,

                                       (2)Γ𝐿,𝑅(𝐸) = 𝑖(Σ𝐿,𝑅(𝐸) ‒ Σ †
𝐿,𝑅(𝐸))

ΓL,R describes the level broadening due to the coupling between left (L) and right (R) electrodes and the central scattering 

region, ΣL,R(E) are the retarded self-energies associated with this coupling.
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                                            (3)𝐺𝑅 = (𝐸Ӽ ‒ 𝐻 ‒ Σ𝐿 ‒ Σ𝑅) ‒ 1

GR is the retarded Green’s function, where H is the Hamiltonian and Ӽ is the overlap matrix (both of them are obtained from 

SIESTA). The transport properties is then calculated using the Landauer formula:

                        (4), where  
𝐺(𝐸𝐹𝑇) = 𝐺○

∞

∫
‒ ∞

𝑑𝐸 𝑇(𝐸)[ ‒ ∂𝑓(𝐸,𝑇,𝐸𝐹) ∂𝐸]

                                                               (5)
𝑓 = [𝑒

(𝐸 ‒ 𝐸𝐹)
𝑘𝐵

𝑇 + 1] ‒ 1

is the Fermi-Dirac probability distribution function, T is the temperature, EF is the Fermi energy,  is the 𝐺○ = (2𝑒2) ℎ

conductance quantum, e is the electron charge and h is the Planck’s constant. DFT can give inaccurate value for the Fermi 

energy that calculated conductance are obtained for a range of Fermi energies 7. The thermopower or Seebeck coefficient S 

is defined as the difference of electrochemical potential per unit temperature difference developing across an electrically 

isolated sample exposed to a temperature gradient. The Seebeck coefficients and power factors is also informative. Providing 

of the transmission function, T(E), can be approximated by a straight line on the scale of KBT, the Seebeck coefficient is given 

by: 

                                                              (6)
𝑆 ≈  ‒ 𝐿|𝑒|𝑇(𝑑𝑙𝑛 𝑇(𝐸)

𝑑𝐸 )𝐸 = 𝐸𝐹

 Where L is the Lorenz number . In other words, S is proportional to the negative of the slope 
𝐿 =  (𝑘𝐵

𝑒 )2𝜋2

3
= 2.44 × 10 ‒ 8 𝑊

of ln T(E), evaluated at the Fermi energy. 

The power factor is the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power 

is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for 

performing work. From the Seebeck coefficient, the power factor was calculated as given in equation (7).

P = GS2 T                                                                                           (7)

Where T is the temperature T = 300 K, G is the electrical conductance and S is the thermopower.

In conventional devices the maximum efficiency of either heat transfer or current generation is proportional to the 

dimensionless thermoelectric figure of merit. The common measure for thermoelectric efficiency is given by the figure of 

merit, which is given by: 8

                                                                                (8)
𝑍𝑇 =  

𝐺𝑆2

𝑘𝑒𝑙 + 𝑘𝑝ℎ
𝑇

Where G is the electrical conductance, S is the thermopower,  is the electron thermal conductance, is the phonon 𝑘𝑒𝑙 𝑘𝑝ℎ

thermal conductance. The figure of merit is determined from the thermoelectric transport coefficients in equations 1, 9 – 10, 

and 12 in the linear response regime. 9–11 

                                                                                        (9)
𝐺 =  

2𝑒2

ℎ
𝑘0
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                                                                        (10)
𝑘𝑒𝑙 =  

2
ℎ𝑇(𝐾2 ‒

𝐾2
1

𝐾0)
In the expressions e = |e| is the absolute value of the electron charge, h is the Planck constant, and T = (TL + TR)/2 is the 

average junction temperature. The coefficients in 9 and 10 are defined as:

                                       (11)
𝑘𝑛 =  ∫𝑑𝐸 𝑇𝑒𝑙(𝐸)( ‒

∂𝑓(𝐸)
∂𝐸 )(𝐸 ‒ 𝜇)𝑛

Where Tph(E) is the electron transmission, and the chemical potential μ ≈ EF is approximately given by the Fermi energy EF of 

the Au electrodes. The corresponding thermal conductance due to the phonons is given in linear response by:

                                                  (12)
𝑘𝑝ℎ =  

1
ℎ

 
∞

∫
0

𝑑𝐸 𝐸𝑇𝑝ℎ(𝐸)
∂𝑛(𝐸,𝑇)

∂𝑇

Where Tph(E) is the phonon transmission and n(E,T ) = {exp(E/kBT ) − 1}−1 is the Bose function, characterizing the phonon 

reservoirs in the left and right electrodes.

Hence, an upper bound for ZT in the limit of vanishing phonon thermal transport κph → 0 is given by the purely electronic 

contribution as 

                                                                         (13)
𝑍𝑒𝑙𝑇 =  

𝑆2𝐺
𝑘𝑒𝑙

𝑇 =  
𝑆2

𝐿

Hence, the Lorenz number is L = κel/GT. With ZelT, and depending on above the figure of merit is presented in a slightly 

different form as: 12

                                                                               (14)

𝑍𝑇 =  
𝑍𝑒𝑙𝑇

1 +
𝑘𝑝ℎ

𝑘𝑒𝑙

Self-Consistent DFT Cycle

Density functional theory uses a self-consistent field (SCF) procedure. For example, let us suppose that  and  can be 𝐸𝐻𝑎𝑟𝑡 𝐸𝑥𝑐

accurately the effective single particle potential (Veff) is determined.  The problem is now that  cannot be calculated until 𝑉𝑒𝑓𝑓

the correct ground state density is known and the correct density cannot be obtained from the Kohn-Sham wavefunctions 

until equation (15) is solved with the correct . This circular problem is solved by carrying out a self-consistent cycle 13–15, 𝑉𝑒𝑓𝑓

as shown in Figure S1.

                                                    (15)[𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓]Ψ𝐾 ‒ 𝑆 = 𝐸Ψ𝐾 ‒ 𝑆

According to Figure S1, the first step is to generate the pseudo-potential which represents the electrostatic interaction 

between the valence electrons and the nuclei and core electrons. The next step is to build the required basis set with a 

selected kinetic energy cutoff to be inserted in the basis set; this step is to expand the density functional quantities. Clearly, 

if the density is known, the energy functional is fully determined. A trial electronic density  is made as an initial 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)

guess. This initial guess is used to calculate the following quantity:

                              (16)𝐺 = 𝐸𝐻𝑎𝑟𝑡[𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)] + 𝐸𝑥𝑐[𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)]
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Next step is to build the required basis set with a selected kinetic energy cutoff to be inserted in the basis set; this step is to 

expand the density functional quantities. Clearly, if the density is known, the energy functional is fully determined. A trial 

electronic density  is made as an initial guess. 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)

Figure S1. A Schematic illustration of the self-consistent DFT cycle. 14

This initial guess is used to calculate the following quantity:

                              (17)𝐺 = 𝐸𝐻𝑎𝑟𝑡[𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)] + 𝐸𝑥𝑐[𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)]
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Then  and the effective potential  are calculated. The effective potential is used to solve the Kohn-Sham 

∂𝐺

∂𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�) 𝑉𝑒𝑓𝑓

equation (17) which leads to finding the electron Hamiltonian. After obtaining the Hamiltonian, it is diagonalized in order to 

find the eigenfunctions and the new electron density  . Hopefully, this  will be closer to true ground state and 𝑛𝑛𝑒𝑤(�⃗�) 𝑛𝑛𝑒𝑤(�⃗�)

is checked. For self-consistency, if this new updated electron density  agrees numerically with the density  𝑛𝑛𝑒𝑤(�⃗�) 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)

used to build the Hamiltonian at the beginning of the SCF cycle, we have reached the end of the loop. Final step is an exit, 

and calculate all the desired converged quantities, such as the total energy, the electronic band structure, density of states 

… etc. Otherwise, the new density  does not agree with the starting density , one generates a new input 𝑛𝑛𝑒𝑤(�⃗�) 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (�⃗�)

density and starts another SCF cycle: build the new density-dependent Hamiltonian, solve and compute the density, and 

check for self-consistency. 13,14

Calculations and Codes

Figure S2. Theoretical calculations and codes.

All molecules in gas phase have been designed using Avogadro 16 visualizer, then the ground-state energy optimization of 

molecules and iso-surfaces calculations achieved using Gaussian 2 software at the B3LYP level of theory 3 with 6-31G** basis 

set. 4,5  The second step involves the rotation, sorting and linking the molecules to the gold electrodes to obtain the theoretical 

models of molecular junctions (see Figure S2), using a set of FORTRAN algorithms. After that the molecular junctions have 

been optimized using SIESTA. 13,17-19 The data (Hamiltonian and overlap matrix) was then fed to the Gollum 14 code, which 
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calculating the electronic and thermoelectric properties of all molecular junctions. All structural aspects 20 have been 

characterised using Jmol viewer as shown in Table S1.

References

1 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
2 H. B. Schlegel, J. S. Binkley, J. A. Pople. J. Chem. Phys. 1984, 80, 1976-1981.
3 A. D. J. Becke, Chem. Phys. 1993, 98, 5648-5652.
4 G. A. Petersson, A. Bennett, T. G. Tensfeldt, , M. A. Al-Laham, W. A.Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 
2193-2198. 
5 G. A. Petersson, M. A. J. Al-Laham, Chem. Phys. 1991, 94, 6081-6090.
6 J. P. Perdew, Y. Wang, Phys. Rev. B. 1992, 45, 13244.
7 C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875-888.
8 B. Marius, J. H. Thomas, P. Fabian, A. Yoshihiro, Phys. Rev. B. 2015, 91, 165419.
9 U. Sivan, Y. Imry, Phys. Rev. B. 1986, 33, 551.
10 K. Esfarjani, M. Zebarjadi, Y. Kawazoe, Phys. Rev. B. 2006, 73, 085406.
11 K-H. Müller, J. Chem. Phys. 2008, 129, 044708.
12 J. Ferrer, C. J. Lambert, V. M. García-Suárez, D. Zs Manrique, D. Visontai, L. Oroszlany, R. Rodríguez-Ferradás, I. 
Grace, S. W. D. Bailey, K. Gillemot, S. Hatef, L. A. Algharagholy, New J. Phys. 2014, 16, 93029.
13 R. E. Sparks, V. M. Garcı´a-Sua´rez, C. J. Lambert, Phys. Rev. B. Cond. Matt. Mat. Phys. 2011, 83, 075437.
14 M. D. Hanwell, D. E. Curtis, D. C Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Chem. Inform. 2012, 4, 1-17.
15 S. Yoram, A. C. Marco, S. M. Theresa, L. A. David, J. Am. Chem. Soc. 2004, 126, 13, 4052–4053. 
16 M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. 
Thijssen, H. S. van der Zant, D. Dulic, Nat. Nanotechnol. 2013, 8, 282–287.
17 O. A. Al-Owaedi, ACS Omega, 2024, 9, 10610–10620.
18 R. Davidson, O. A. Al-Owaedi, D. C. Milan, Q. Zeng, J. Tory, F. Hartl, S. J. Higgins, R. J. Nichols, C. J. Lambert, P. J. 
Low, Inorg. Chem. 2016, 55, 2691–2700.
19 R. J. Davidson, D. C. Milan, O. A. Al-Owaedi, A. K. Ismael, R. J. Nichols, S. J. Higgins, C. J. Lambert,   D. S. Yufita,  
A. Beeby, RSC Adv. 2018, 8, 23585-23590.
20 B. A. A. Al-Mammory, O. A. Al-Owaedi, E. M. Al-Robayi, J. Phys.: Conf. Ser. 2021, 1818, 01209.


