Supporting Information

Preparation of Zn₃Nb₂O₈ anode material for high-performance lithium/sodiumion batteries

Xuemin Yin,^{a,*} Shuling Cheng,^b Yuyang Zhang,^c Chencheng liu,^a

^aHebei Key Laboratory of Green Development of Rock and Mineral Materials, Hebei GEO University, Shijiazhuang 050031, China

^bSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

^cFaculty of Robot Science and Engineering, Northeastern University, Liaoning 110819, China

*Corresponding author E-mail: xueminyin24@163.com

Figure S1. (a)XRD patterns of zinc niobate materials calcined to 700-1200 $^{\circ}$ C at 10 $^{\circ}$ C min⁻¹ in air. (b)XRD patterns of zinc niobium oxide with different calcination conditions.

Figure S2. XPS spectra of $Zn_3Nb_2O_8$ -B for C 1s.

Figure S3. (a) XPS survey spectra of $Zn_3Nb_2O_8$ -A; XPS spectra of $Zn_3Nb_2O_8$ -A for (b) Zn 2p, (c) Nb 3d, (d) O 1s and (e) C 1s.

Figure S4. EDX mapping images of $Zn_3Nb_2O_8$ -A

Figure S5. CV curves of $Zn_3Nb_2O_8\mbox{-}A$ at the scan rate of 0.1 mV s^-1

Figure S6. Galvanostatic charge/discharge (GCD) curves of $Zn_3Nb_2O_8$ -A at different current densities from 0.05 to 4.0 A g⁻¹

Figure S7. Discharge and charge curves of (a) $Zn_3Nb_2O_8$ -A and (b) $Zn_3Nb_2O_8$ -B at a current density of 0.2 A g⁻¹; (c) Discharge and charge curves of $Zn_3Nb_2O_8$ -A at a current density of 0.5 A g⁻¹

Figure S8. (a) CV curves of $Zn_3Nb_2O_8$ -A from 0.1 to 10.0 mV s⁻¹; (b) Plots of log(i) vs. log(v) of the $Zn_3Nb_2O_8$ -A/Li cell; (c) The pseudo-capacitive contribution of $Zn_3Nb_2O_8$ -B electrode at the sweep rate of 2 mV s⁻¹; (d) Contribution ratios of diffusion- and capacitive- controlled capacities at different scan rates.

Figure S9. The pseudo-capacitive contribution of Zn3Nb2O8-B electrode at the sweep rate of 2 mV s-1;

Figure S10. (a) Rate performances of $Zn_3Nb_2O_8$ -A at different current densities for SIBs; (b) Galvanostatic discharge and charge curves of $Zn_3Nb_2O_8$ -A at different current densities from 0.05 to 3.0 A g⁻¹. (c) Cycling performances of $Zn_3Nb_2O_8$ -A at a current density of 0.5 A g⁻¹; (d) Discharge and charge curves of $Zn_3Nb_2O_8$ -A at a current density of 0.5 A g⁻¹;

Figure S11. Nyquist plots of $Zn_3Nb_2O_8$ -A and $Zn_3Nb_2O_8$ -B

		Cycling	Current		
	Current	stability	density		
Anode	density	(mAh g ⁻¹)-	(mA g ⁻¹)/	Potential (V)	Ref.
	(mA g ⁻¹)	capacity	capability		
		retention	(mAh g ⁻¹)		
Nb ₂ O ₅	50	60.0 after 100 cycles (98%)	1000/16	0.01-3.0	[1]
K ₆ Nb _{10.8} O ₃₀	100	150.0 after 400 cycles (80%)	800/50	0.5-3.0	[2]
ZnNb2O6	100	181.9 after 100 cycles (50%)	5000/18	0.005–3.0 V	[3]
VNb ₉ O ₂₅	100	205.0 after 600 cycles (94.2%)	1000/105	1.0-3.0	[4]
Bi5Nb3O15	100	212.1 after 100 cycles (66.4%)	700/88.2	0.01-3.0	[5]
TiNb ₂ O ₇ @C	100	225.2 after 500 cycles (75.6%)	3880/157.9	0.01-3.0	[6]
CrNb ₄₉ O ₁₂₄	200	190.0 after 500 cycles (66%)	500/198.0	1.0-3.0	[7]
SnNb2O6@C	500	102.5 after 800 cycles (41%)	10000/67	0.01-3.0	[8]
GeNb18O47	500	162.1 after 200 cycles (94.6%)	1000/123.2	1.0-3.0	[9]
		140.0 after			
WNb ₁₂ O ₃₃	700	700 cycles	700/115	1.0-3.0	[10]
		(86.1%)			
Zn ₃ Nb ₂ O ₈	500	291.7 after 650 cycles (139.5%)	4000/91.4	0.01-3.0	This work

Table S1. Electrochemical energy storage performances of the reported Nb-based for the application in LIBs.

References:

[1] G.-Y. Zeng, H. Wang, J. Guo, L.-M. Cha, Y.-H. Dou, J.-M. Ma, *Chinese Chemical Letters* 2017, 28, 755.

[2] H. Zhu, X. Cheng, H. Yu, W. Ye, N. Peng, R. Zheng, T. Liu, M. Shui, J. Shu, *Nano Energy* 2018, *52*, 192.

[3] X.F. Li, J. Li, R.N. Ali, Z. Wang, G.J. Hu, B. Xiang, Chemical Engineering Journal 2019, 368, 764.

[4] S. Qian, H. Yu, L. Yan, H. Zhu, X. Cheng, Y. Xie, N. Long, M. Shui, J. Shu, ACS Applied Materials Interfaces 2017, 9, 30608.

[5] Y. Li, R. Zheng, H. Yu, X. Cheng, H. Zhu, Y. Bai, T. Liu, M. Shui, J. Shu, *Ceramics International* 2018, 44, 11505.

[6] G. Zhu, Q. Li, R. Che, Chemistry 2018, 24, 12932.

[7] W. Ye, H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu, N. Long, M. Shui, J. Shu, ACS Applied Energy Materials 2019, 2, 2672.

[8] T. Liu, X. Yin, X. Yin, S. Cheng, X. Wang, Y. Zhao, *Chemistry-An Asian Journal* 2022, 17, e202200288.

[9] F. Ran, X. Cheng, H. Yu, R. Zheng, T. Liu, X. Li, N. Ren, M. Shui, J. Shu, *Electrochimica Acta* 2018, 282, 634.

[10] L. Yan, H. Lan, H. Yu, S. Qian, X. Cheng, N. Long, R. Zhang, M. Shui, J. Shu, *Journal of Materials Chemistry A* 2017, *5*, 8972.