### Direct Synthesis of Carbamates, Thiocarbamates, and Ureas from Boc-Protected Amines: A Sustainable and Efficient Approach

Wanyong Li,<sup>+, [a]</sup> Mengting Lv,<sup>+, [a]</sup> Xiaolin Luo, <sup>[a]</sup> Zhouyu Wang,<sup>\*, [a, b]</sup> Qiao Song,<sup>\*, [a, b]</sup> Xiaoqi Yu<sup>[a, b]</sup>

[a] Department of Chemistry, Xihua University, Chengdu 610039, China

[b] Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Yibin 644000, China

[\*] Corresponding authors. E-mail address: zhouyuwang@mail.xhu.edu.cn, zhouyuwang77@163.com (Z.-Y. Wang); songqiao@mail.xhu.edu.cn (Q. Song)

[+] These authors contributed equally.

### **Supporting Information**

#### **Contants:**

| 1. | General Information                                                             | S2  |
|----|---------------------------------------------------------------------------------|-----|
| 2. | Experimental procedure and characterization data                                | S2  |
|    | 2.1 General procedure for the synthesis of carbamates, thiocarbamates and ureas | S2  |
|    | 2.2 Characterization                                                            | S2  |
|    | 2.3 References                                                                  | S12 |
| 3. | <sup>1</sup> H, <sup>13</sup> C NMR and HRMS spectra                            | S13 |

#### 2.1 General information

All solvents were distilled from appropriate drying agents prior to use. Flash column chromatography was performed using silica gel (300-400 mesh). All reactions conducted at 110 °C were performed on a DF-101D collector thermostatic magnetic stirrer pan. <sup>1</sup>H NMR and <sup>13</sup>C NMR (400 and 101 MHz, respectively) spectra were recorded on a Bruker 400 MHz NMR spectrometer in CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub>. <sup>1</sup>H NMR chemical shifts were reported in ppm ( $\delta$ ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl<sub>3</sub>, 7.26 ppm, DMSO-*d*<sub>6</sub>, 2.50 ppm). <sup>13</sup>C NMR chemical shifts were reported in ppm from TMS with the solvent resonance as the internal standard (CDCl<sub>3</sub>, 77.0 ppm, DMSO-*d*<sub>6</sub>, 39.5 ppm). HRMS data were recorded on a SCIEX X500R QTOF HRMS apparatus. Melting points were recorded on a MP430 automatic melting point apparatus.

# 2.2 General procedure for the synthesis of carbamates, thiocarbamates and ureas

Into a dry 10-mL round-bottom flask equipped with a magnetic stirring bar were added successively a N-Boc aniline (0.26 mmol, 1.0 equiv.), Lithium tertbutoxide (0.31 mmol, 1.2 equiv.), 1 mL of toluene and alcohol, mercaptan or amine substrate (1.3 mmol, 5.0 equiv.). Stir at 110 °C for 2h, the mixture was cooled to room temperature and then concentrated under reduced pressure. Purification by flash chromatography on silica gel to give the corresponding carbamates, thiocarbamates and ureas.

#### 2.3 Characterization data

butyl phenylcarbamate (8a)

Prepared according to general procedure; 95% yield; White crystal; M.p. 60-62 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (d, J = 8.0 Hz, 2H), 7.37 – 7.26 (m, 2H), 7.14 – 7.01 (m, 1H), 6.78 (d, J = 4.7 Hz, 1H), 4.20 (t, J = 6.7 Hz, 2H), 1.75 – 1.61 (m, 2H), 1.52 – 1.37 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

pentyl phenylcarbamate (8b)

Prepared according to general procedure; 93% yield; White solid; M.p. 46-48 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 (d, J = 8.1 Hz, 2H), 7.30 (t, J = 7.8 Hz, 2H), 7.05 (t,

J = 7.4 Hz, 1H), 6.63 (s, 1H), 4.16 (t, J = 6.7 Hz, 2H), 1.74 – 1.61 (m, 2H), 1.41 – 1.32 (m, 4H), 0.92 (t, 3H). All analytical data were in good accordance with data reported in the literature<sup>[2]</sup>.

ethyl phenylcarbamate (8c)

Prepared according to general procedure; 95% yield; White crystal; M.p. 49-50 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.29 (d, J = 8.0 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.00 – 6.94 (m, 1H), 6.50 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

isobutyl phenylcarbamate (8d)



Prepared according to general procedure; 73% yield; White crystal; M.p. 84-86 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.59 (s, 1H), 7.56 – 7.42 (m, 2H), 7.40 – 7.21 (m, 2H), 7.01 – 6.94 (m, 1H), 3.87 (d, *J* = 6.7 Hz, 2H), 2.00 – 1.83 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 6H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

neopentyl phenylcarbamate (8e)



Prepared according to general procedure; 98% yield; White solid; M.p. 72-74 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.56 (s, 1H), 7.54 – 7.40 (m, 2H), 7.32 – 7.21 (m, 2H), 6.98 (m, *J* = 7.3, 1.2 Hz, 1H), 3.79 (s, 2H), 0.95 (s, 9H). All analytical data were in good accordance with data reported in the literature<sup>[3]</sup>.

benzyl phenylcarbamate (8f)



Prepared according to general procedure; 60% yield; White crystal; M.p. 70-72 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ):  $\delta$  9.75 (s, 1H), 7.48 (d, J = 7.8 Hz, 2H), 7.45 – 7.31 (m, 5H), 7.28 (dd, J = 10.8, 5.1 Hz, 2H), 6.99 (t, J = 7.4 Hz, 1H),

5.15 (s, 2H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

4-methoxybenzyl phenylcarbamate (8g)



Prepared according to general procedure; 59% yield; White solid; M.p. 88-90 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.46 – 7.20 (m, 6H), 7.05 (d, J = 7.8 Hz, 1H), 6.93 – 6.85 (m, 2H), 6.73 (s, 1H), 5.12 (s, 2H), 3.80 (s, 3H). All analytical data were in good accordance with data reported in the literature<sup>[4]</sup>.

4-(methylthio)benzyl phenylcarbamate (8h)



Prepared according to general procedure; 93% yield; White solid; M.p. 89-90 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 6.7 Hz, 4H), 7.24 (dd, J = 8.2, 2.4 Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.67 (s, 1H), 5.14 (s, 2H), 2.48 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  153.48, 139.17, 137.92, 132.99, 129.23 (d, J = 6.2 Hz), 126.84, 123.75, 118.93, 66.84, 15.94. HRMS (ESI): calcd for C<sub>15</sub>H<sub>15</sub>NO<sub>2</sub>S<sup>+</sup> (M + Na)<sup>+</sup>: 296.0721, found 296.0727.

3-phenylpropyl phenylcarbamate (8i)



Prepared according to general procedure; 70% yield; White solid; M.p. 47-48 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.64 (s, 1H), 7.51 – 7.43 (m, 2H), 7.33 – 7.17 (m, 7H), 7.02 – 6.92 (m, 1H), 4.08 (t, *J* = 6.6 Hz, 2H), 2.69 (dd, *J* = 8.6, 6.9 Hz, 2H), 2.03 – 1.87 (m, 2H). All analytical data were in good accordance with data reported in the literature<sup>[5]</sup>.

2-(thiophen-2-yl)ethyl phenylcarbamate (8j)



Prepared according to general procedure; 83% yield; White solid; M.p. 60-61 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 – 7.22 (m, 4H), 7.16 (d, *J* = 4.4 Hz, 1H),

7.07 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 4.4 Hz, 1H), 6.88 (s, 1H), 6.69 (s, 1H), 4.39 (t, J = 7.8 Hz, 2H), 3.20 (t, J = 7.6 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  153.46, 140.14, 137.94, 129.24, 127.11, 125.72, 124.21, 123.72, 118.95, 65.54, 29.81. HRMS (ESI): calcd for C<sub>13</sub>H<sub>13</sub>NO<sub>2</sub>S<sup>+</sup> (M + Na)<sup>+</sup>: 270.0565, found 270.0569.

cyclohexyl phenylcarbamate (8k)



Prepared according to general procedure; 95% yield; White crystal; M.p. 79-80 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.53 (s, 1H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.26 (dd, *J* = 10.7, 5.1 Hz, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 4.62 (td, *J* = 9.0, 4.0 Hz, 1H), 1.95 - 1.82 (m, 2H), 1.71 (dd, *J* = 9.2, 4.1 Hz, 2H), 1.59 - 1.47 (m, 1H), 1.46 - 1.28 (m, 4H), 1.28 - 1.15 (m, 1H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

isopropyl phenylcarbamate (81)



Prepared according to general procedure; 90% yield; White crystal; M.p. 83-85 °C;<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ):  $\delta$  9.53 (s, 1H), 7.52 – 7.44 (m, 2H), 7.30 – 7.21 (m, 2H), 7.04 – 6.87 (m, 1H), 4.89 (p, J = 6.3 Hz, 1H), 1.25 (d, J = 6.4 Hz, 6H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

heptan-2-yl phenylcarbamate (8m)



Prepared according to general procedure; 90% yield; Yellow oil; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.49 (s, 1H), 7.48 – 7.38 (m, 2H), 7.30 – 7.15 (m, 2H), 7.01 – 6.89 (m, 1H), 4.82 – 4.70 (m, 1H), 1.61 – 1.43 (m, 2H), 1.38 – 1.22 (m, 6H), 1.20 (d, J = 6.3 Hz, 3H), 0.89 – 0.80 (m, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.30, 139.32, 128.63, 122.13, 118.05, 70.49, 35.57, 31.07, 24.53, 21.98, 20.16, 13.84. HRMS (ESI): calcd for C<sub>14</sub>H<sub>21</sub>NO<sub>2</sub><sup>+</sup> (M + Na)<sup>+</sup>: 258.1470, found 258.1474.

1-phenylethyl phenylcarbamate (8n)



Prepared according to general procedure; 50% yield; White crystal; M.p. 90-92 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 (d, J = 10.0 Hz, 6H), 7.33 – 7.24 (m, 3H), 7.05 (d, J = 7.6 Hz, 1H), 6.66 (s, 1H), 5.90 (q, J = 7.2 Hz, 1H), 1.60 (d, J = 4.2 Hz, 3H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

2-ethoxyethyl phenylcarbamate (80)



Prepared according to general procedure; 80% yield; Yellow oil; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.73 (s, 1H), 7.52 – 7.41 (m, 2H), 7.35 – 7.19 (m, 2H), 7.08 – 6.93 (m, 1H), 4.30 – 4.10 (m, 2H), 3.65 – 3.53 (m, 2H), 3.47 (q, *J* = 7.0 Hz, 2H), 1.12 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  153.95, 139.63, 129.17, 122.79, 118.60, 68.54, 65.99, 64.01, 15.51. HRMS (ESI): calcd for C<sub>11</sub>H<sub>15</sub>NO<sub>3</sub><sup>+</sup> (M + Na)<sup>+</sup>: 270.0950, found 232.0954.

2-bromoethyl phenylcarbamate (8p)



Prepared according to general procedure; 70% yield; Pale yellow oil; M.p. 73-75 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.12 (t, J = 7.9 Hz, 2H), 6.67 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 8.0 Hz, 2H), 3.77 (t, J = 5.2 Hz, 2H), 3.24 (t, J = 5.2 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  147.91, 129.51, 118.44, 113.71, 61.27, 46.55, 29.85. HRMS (ESI): calcd for C<sub>9</sub>H<sub>10</sub>NO<sub>2</sub>Br<sup>+</sup> (M + Na)<sup>+</sup>: 265.9793, found 265.9791.

tert-butyl 4-(2-((phenylcarbamoyl)oxy)ethyl)piperidine-1-carboxylate (8q)



Prepared according to general procedure; 80% yield; Pale yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.31 (d, J = 8.0 Hz, 2H), 7.26 – 7.18 (m, 2H), 7.05 – 6.95 (m, 1H), 6.62 (s, 1H), 4.15 (t, J = 6.5 Hz, 2H), 4.10 – 3.95 (m, 2H), 2.62 (t, J = 12.9 Hz, 2H), 1.62 (d, J = 12.9 Hz, 2H), 1.55 (t, J = 6.4 Hz, 2H), 1.38 (s, 9H), 1.23 – 1.16 (m, 1H), 1.13 – 1.01 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  154.96, 138.17 (d, J = 2.2 Hz),

129.07, 123.41, 118.83, 79.43, 62.89, 39.34, 35.56, 32.99, 32.06, 28.54, 14.25. **HRMS** (ESI): calcd for  $C_{19}H_{28}N_2O_4^+$  (M + Na)<sup>+</sup>: 371.1947, found 371.1952.

3-methylbut-2-en-1-yl phenylcarbamate (8r)

Prepared according to general procedure; 80% yield; White solid; M.p. 63-65 °C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.33 – 7.25 (m, 2H), 7.24 – 7.17 (m, 2H), 6.97 (tt, J = 7.2, 1.3 Hz, 1H), 6.51 (s, 1H), 5.32 (tdt, J = 7.3, 2.9, 1.4 Hz, 1H), 4.58 (d, J = 7.3 Hz, 2H), 1.70 (d, J = 1.4 Hz, 3H), 1.67 (d, J = 1.4 Hz, 3H). All analytical data were in good accordance with data reported in the literature<sup>[6]</sup>.

bicyclo[2.2.1]hept-5-en-2-ylmethyl phenylcarbamate (8s)



Prepared according to general procedure; 95% yield; White solid; M.p. 123-125 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 – 7.25 (m, 4H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.65 (d, *J* = 12.3 Hz, 1H), 6.23 – 5.94 (m, 2H), 4.33 – 3.70 (m, 2H), 2.96 – 2.68 (m, 2H), 2.52 – 2.33 (m, 1H), 1.93 – 1.72 (m, 1H), 1.52 – 0.51 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  153.84, 137.82, 136.38, 132.36, 129.23, 123.54 (d, *J* = 5.5 Hz), 118.84, 68.88, 49.59, 44.08, 42.40, 38.26, 29.11. HRMS (ESI): calcd for C<sub>15</sub>H<sub>17</sub>NO<sub>2</sub><sup>+</sup> (M + Na)<sup>+</sup>: 266.1157, found 266.1161.

allyl phenylcarbamate (8t)



Prepared according to general procedure; 20% yield; White crystal; M.p. 67-68 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.70 (s, 1H), 7.49 – 7.42 (m, 2H), 7.35 – 7.20 (m, 2H), 7.05 – 6.94 (m, 1H), 6.07 – 5.89 (m, 1H), 5.47 – 5.10 (m, 2H), 4.64 – 4.56 (m, 2H). All analytical data were in good accordance with data reported in the literature<sup>[1]</sup>.

4-(methylthio)benzyl (4-fluorophenyl)carbamate (8u)



Prepared according to general procedure; 80% yield; White solid; M.p. 113-114 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.31 (d, J = 7.9 Hz, 4H), 7.28 – 7.22 (m, 2H), 6.99 (t, J = 8.4 Hz, 2H), 6.63 (s, 1H), 5.14 (s, 2H), 2.48 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  160.48, 153.66, 139.25, 133.89, 132.87, 129.21, 126.80, 120.73, 115.88 (d, J = 22.6 Hz), 66.94, 15.90. HRMS (ESI): calcd for C<sub>15</sub>H<sub>14</sub>NO<sub>2</sub>SF<sup>+</sup> (M + Na)<sup>+</sup>: 314.0627, found 314.0630.

4-(methylthio)benzyl (4-chlorophenyl)carbamate (8v)



Prepared according to general procedure; 80% yield; White solid; M.p. 133-134 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 – 7.28 (m, 4H), 7.28 – 7.22 (m, 4H), 6.68 (s, 1H), 5.14 (s, 2H), 2.48 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  153.35, 139.31, 136.52, 132.69, 129.24, 128.74, 126.74, 120.08, 67.02, 15.86. HRMS (ESI): calcd for C<sub>15</sub>H<sub>14</sub>NO<sub>2</sub>SCl<sup>+</sup> (M + Na)<sup>+</sup>: 330.0331, found 330.0334.

4-(methylthio)benzyl (4-bromophenyl)carbamate (8w)



Prepared according to general procedure; 90% yield; Yellow solid; M.p. 133-135 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.37 (m, 2H), 7.34 – 7.22 (m, 6H), 6.71 (s, 1H), 5.14 (s, 2H), 2.48 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  153.14, 139.17, 136.89, 132.49, 132.03, 129.09, 126.56, 120.25, 116.08, 66.88, 15.70. HRMS (ESI): calcd for C<sub>15</sub>H<sub>14</sub>NO<sub>2</sub>SBr<sup>+</sup> (M + Na)<sup>+</sup>: 373.9826, found 373.9828.

4-(methylthio)benzyl (3-aminophenyl)carbamate (8x)



Prepared according to general procedure; 93% yield; Yellow solid; M.p. 68-70 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.9 Hz, 3H), 7.05 (t, J = 8.0 Hz, 1H), 6.94 (s, 1H), 6.62 – 6.54 (m, 2H), 6.45 – 6.33 (m, 1H), 5.13 (s, 2H), 3.68 (s, 2H), 2.48 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$ 153.38, 147.50, 139.09, 138.95, 133.05, 129.98, 129.15, 126.82, 110.53, 108.96, 105.45, 66.73, 15.93. HRMS (ESI): calcd for C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>S<sup>+</sup> (M + Na)<sup>+</sup>: 311.0830, found 311.0834. 4-(methylthio)benzyl cyclohexylcarbamate (8y)



Prepared according to general procedure; 50% yield; White solid; M.p. 93-95 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 – 7.20 (m, 4H), 5.03 (s, 2H), 4.61 (s, 1H), 3.49 (d, *J* = 10.5 Hz, 1H), 2.48 (s, 3H), 2.01 – 1.86 (m, 2H), 1.77 – 1.64 (m, 2H), 1.63 – 1.54 (m, 2H), 1.42 – 1.26 (m, 2H), 1.16 – 1.09 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  155.70, 138.67, 133.74, 129.00, 126.85, 66.26, 50.08, 33.57, 25.65, 24.93, 16.01. HRMS (ESI): calcd for C<sub>15</sub>H<sub>21</sub>NO<sub>2</sub>S<sup>+</sup> (M + Na)<sup>+</sup>:302.1191, found 302.1196.

S-phenethyl phenylcarbamothioate (8z)



Prepared according to general procedure; 80% yield; White solid; M.p. 108-110 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.46 – 7.39 (m, 2H), 7.38 – 7.28 (m, 4H), 7.26 – 7.20 (m, 3H), 7.13 (ddt, J = 8.6, 7.3, 1.2 Hz, 1H), 7.01 (s, 1H), 3.29 – 3.18 (m, 2H), 2.99 (dd, J = 8.8, 6.5 Hz, 2H). All analytical data were in good accordance with data reported in the literature<sup>[7]</sup>.

S-isobutyl phenylcarbamothioate (8aa)



Prepared according to general procedure; 90% yield; White solid; M.p. 105-107 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 – 7.37 (m, 2H), 7.32 – 7.23 (m, 2H), 7.14 – 7.00 (m, 2H), 2.88 (d, J = 6.7 Hz, 2H), 1.86 (dq, J = 13.3, 6.7 Hz, 1H), 0.98 (d, J = 6.7 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.19, 137.98, 129.24, 124.44, 119.80, 38.82, 29.31, 28.47, 21.80. HRMS (ESI): calcd for C<sub>11</sub>H<sub>15</sub>NOS<sup>+</sup> (M + Na)<sup>+</sup>: 232.0772, found 232.0775.

S-cyclohexyl phenylcarbamothioate (8ab)



Prepared according to general procedure; 70% yield; Yellow solid; M.p. 106-107 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.38 (m, 2H), 7.33 – 7.27 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H), 7.08 – 7.04 (m, 1H), 3.60 – 3.50 (m, 1H), 2.09 –

1.96 (m, 2H), 1.73 (dq, J = 12.1, 3.9 Hz, 2H), 1.45 (dddd, J = 21.9, 16.0, 9.5, 4.5 Hz, 5H), 1.34 – 1.19 (m, 1H). All analytical data were in good accordance with data reported in the literature<sup>[8]</sup>.

S-(4-chlorobenzyl) phenylcarbamothioate (8ac)

Prepared according to general procedure; 90% yield; Yellow solid; M.p. 119-121 °C; <sup>1</sup>H NMR NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (d, J = 8.1 Hz, 2H), 7.31 (dd, J = 17.6, 7.1 Hz, 6H), 7.12 (t, J = 7.4 Hz, 1H), 7.03 (s, 1H), 4.17 (s, 2H).All analytical data were in good accordance with data reported in the literature<sup>[8]</sup>.

S-benzyl phenylcarbamothioate (8ad)



Prepared according to general procedure; 70% yield; Yellow solid; M.p. 93-95 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 – 7.28 (m, 9H), 7.27 – 7.20 (m, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 7.05 (s, 1H), 4.23 (s, 2H). All analytical data were in good accordance with data reported in the literature<sup>[8]</sup>.

S-butyl phenylcarbamothioate (8ae)



Prepared according to general procedure; 90% yield; White solid; M.p. 73-74 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 – 7.37 (m, 2H), 7.35 – 7.27 (m, 2H), 7.10 (tt, *J* = 7.2, 1.2 Hz, 2H), 2.98 (t, *J* = 7.3 Hz, 2H), 1.65 (tt, *J* = 8.8, 6.7 Hz, 2H), 1.43 (dq, *J* = 14.5, 7.3 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H) All analytical data were in good accordance with data reported in the literature<sup>[8]</sup>.

1-phenyl-3-(m-tolyl)urea (8af)



Prepared according to general procedure; 87% yield; White solid; M.p. 230-235 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ):  $\delta$  8.65 (s, 1H), 8.56 (d, J = 6.8 Hz,

1H), 7.49 - 7.42 (m, 3H), 7.33 - 7.29 (m, 2H), 7.19 - 7.10 (m, 1H), 7.00 - 6.92 (m, 2H), 6.79 (d, J = 7.4 Hz, 1H), 2.28 (s, 3H). All analytical data were in good accordance with data reported in the literature<sup>[9]</sup>.

1-(2-bromophenyl)-3-phenylurea (8ag)



Prepared according to general procedure; 70% yield; White solid; M.p. 171-173 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.46 (s, 1H), 8.14 (s, 1H), 8.09 – 8.03 (m, 1H), 7.63 – 7.59 (m, 1H), 7.47 (d, *J* = 7.9 Hz, 2H), 7.32 (dt, *J* = 15.7, 7.7 Hz, 3H), 6.97 (dt, *J* = 8.7, 4.2 Hz, 2H). All analytical data were in good accordance with data reported in the literature<sup>[10]</sup>.

1-(3-bromophenyl)-3-phenylurea (8ah)



Prepared according to general procedure; 81% yield; White crystal; M.p. 171-173 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.98 – 8.70 (m, 1H), 8.64 (s, 1H), 7.48 – 7.43 (m, 3H), 7.34 – 7.21 (m, 4H), 6.98 (qt, *J* = 7.4, 1.3 Hz, 2H). All analytical data were in good accordance with data reported in the literature<sup>[10]</sup>.

1-(naphthalen-1-yl)-3-phenylurea (8ai)



Prepared according to general procedure; 95% yield; Pale purple solid; M.p. 242-246 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.84 (d, *J* = 115.3 Hz, 1H), 8.58 (s, 1H), 8.12 - 7.81 (m, 2H), 7.60 - 7.49 (m, 1H), 7.49 - 7.40 (m, 2H), 7.42 - 7.33 (m, 2H), 7.29 - 7.15 (m, 3H), 6.98 - 6.86 (m, 1H). All analytical data were in good accordance with data reported in the literature<sup>[11]</sup>.

1-(2-aminophenyl)-3-phenylurea (8aj)



Prepared according to general procedure; 80% yield; White solid; M.p. 183-184 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.68 (s, 2H), 7.45 (dd, *J* = 8.5, 1.0 Hz, 4H), 7.34 – 7.20 (m, 4H), 7.01 – 6.83 (m, 2H). All analytical data were in good accordance with data reported in the literature<sup>[12]</sup>.

1-benzyl-3-phenylurea (8ak)



Prepared according to general procedure; 81% yield; White solid; M.p. 171-172 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.54 (s, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.27 (m, 4H), 7.27 – 7.19 (m, 3H), 6.94 – 6.85 (m, 1H), 6.60 (t, *J* = 6.0 Hz, 1H), 4.31 (d, *J* = 5.9 Hz, 2H). All analytical data were in good accordance with data reported in the literature<sup>[12]</sup>.

#### 2.3 References

- [1] I. Dindarloo Inaloo, S. Majnooni, New J. Chem. **2018**, 42, 13249–13255.
- [2] X. Zhang, H. Jing, G. Zhang, *Synthetic Communications* **2010**, *40*, 1614–1624.
- [3] C. Hu, T.-R. Su, T.-J. Lin, C.-W. Chang, K.-L. Tung, New J. Chem. 2018, 42, 3999–4007.
- [4] X. Zhu, Y. Qi, Y. Yang, D. Guo, Z. Huang, L. Zhang, Y. Wei, S. Zhou, S. Wang, *Inorg. Chem.* 2022, 61, 3202–3211.
- [5] R. N. Salvatore, F. Chu, A. S. Nagle, E. A. Kapxhiu, R. M. Cross, K. W. Jung, 2002.
- [6] X. Yi, X. Hu, Angew Chem Int Ed **2019**, 58, 4700–4704.
- [7] K. H. Lee, M. Koketsu, S. Y. Choi, K. J. Lee, P. Lee, H. Ishihara, S. Y. Kim, 2005.
- [8] C. Lu, L. Hu, B. Zhao, Y. Yao, n.d.
- [9] R. Ahmed, R. Gupta, Z. Akhter, M. Kumar, P. P. Singh, Org. Biomol. Chem. 2022, 20, 4942– 4948.
- [10] M. S. Yadav, S. K. Singh, A. K. Agrahari, A. S. Singh, V. K. Tiwari, Synthesis 2021, 53, 2494– 2502.
- [11] L. Wang, H. Wang, G. Li, S. Min, F. Xiang, S. Liu, W. Zheng, Adv Synth Catal 2018, 360, 4585– 4593.
- [12] J. E. Jakobsson, S. Telu, S. Lu, S. Jana, V. W. Pike, Chemistry A European J 2021, 27, 10369– 10376.

### 1. <sup>1</sup>H, <sup>13</sup>C NMR and HRMS spectra

#### <sup>1</sup>H NMR spectra of 8a



### <sup>1</sup>H NMR spectra of 8c



### <sup>1</sup>H NMR spectra of 8e



<sup>1</sup>H NMR spectra of  $\mathbf{8f}$ 





<sup>1</sup>HNMR spectra of 8g







### <sup>13</sup>C NMR spectra of **8h**



### HRMS spectra of 8h

| Monoisotopic Mass, Even Electron lons<br>836 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)<br>Elements Used: |                      |                   |                   |        |          |                     |                           |                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------|--------|----------|---------------------|---------------------------|----------------------------|--|
| C: 15-15 H: 15-                                                                                                                                                 | 15 N: 0-100          | O: 0-100          | Na: 0-1           | S: 1-4 |          |                     |                           |                            |  |
| 25<br>240403-13-8 11 (0.07                                                                                                                                      | 6)                   |                   |                   |        |          |                     |                           | 1: TOF MS ES+<br>1.02e+005 |  |
| 100-                                                                                                                                                            |                      |                   |                   | 296.0  | )727     |                     |                           |                            |  |
|                                                                                                                                                                 |                      |                   |                   |        |          |                     |                           |                            |  |
| %-                                                                                                                                                              |                      |                   |                   |        |          |                     |                           |                            |  |
| -                                                                                                                                                               |                      |                   |                   |        | 207 0758 |                     |                           |                            |  |
| 267.15<br>260.0                                                                                                                                                 | 67 274.2748<br>270.0 | 281.1725<br>280.0 | 288.9231<br>290.0 | ,      | 302.1437 | 312.0650 3<br>310.0 | 18.3004 322.3546<br>320.0 | 330.3389<br>330.0 m/z      |  |

### <sup>1</sup>H NMR spectra of 8i

# $\begin{array}{c} 9.64\\ 7.47\\ 7.49\\ 7.47\\ 7.49\\ 7.49\\ 7.49\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\$

Î <sup>1</sup>H NMR (400 MHz, DMSO)



<sup>1</sup>H NMR spectra of **8**j







### <sup>13</sup>C NMR spectra of **8j**



### HRMS spectra of 8j

| Monoisotopic Mass, Even Electron Ions<br>647 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)<br>Elements Used: |                     |                      |             |               |        |              |                            |                         |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------|---------------|--------|--------------|----------------------------|-------------------------|----------------------------|
| C: 13-13                                                                                                                                                        | H: 13-13            | N: 0-100             | O: 0-100    | Na: 0-1       | S: 1-4 |              |                            |                         |                            |
| 240403-13-1                                                                                                                                                     | 0 19 (0.105)        |                      |             |               |        |              |                            |                         | 1: TOF MS ES+<br>2.75e+004 |
| 100-                                                                                                                                                            |                     |                      |             |               | 270.   | 0569         |                            |                         |                            |
|                                                                                                                                                                 |                     |                      |             |               |        |              |                            |                         |                            |
| -<br>254.9<br>0                                                                                                                                                 | 9092 257.1<br>255.0 | 1502 261.10<br>260.0 | 72 262.7461 | 267.<br>265.0 | 1559   | 271.0609<br> | 274.2782 279.0916<br>275.0 | 281.1746 282.1<br>280.0 | 734286.0376<br>            |

### <sup>1</sup>H NMR spectra of 8k

 $\begin{array}{c} 9.53\\ 7.47\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\ 7.72\\$ 



### $^{1}$ H NMR spectra of **8**l





### <sup>1</sup>H HRMS spectra of 8m

# $\begin{array}{c} 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\$



#### HRMS spectra of 8m

#### <sup>1</sup>H NMR spectra of **8n**



### <sup>1</sup>HNMR spectra of 80

# 





<sup>13</sup>C NMR spectra of **80** 







#### HRMS spectra of 80

Monoisotopic Mass, Even Electron Ions 212 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 11-11 H: 15-15 N: 0-100 O: 0-100 Na: 0-1 25 240403-13-15 22 (0.115)



#### <sup>1</sup>HNMR spectra of **8p**







### <sup>13</sup>C NMR spectra of **8p**



### HRMS spectra of 8p

Monoisotopic Mass, Even Electron Ions 193 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 9-9 H: 10-10 N: 0-100 O: 0-100 Na: 0-1 Br: 1-2



### <sup>1</sup>H NMR spectra of 8q



#### HRMS spectra of 8q

 322.1992
 331.0962
 338.3422
 353.2613360.3229
 373.2003
 387.1687
 394.2701
 406.3304413.2650
 424.8892

 320
 325
 330
 335
 340
 345
 350
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425

1: TOF MS ES+ 3.69e+005

#### <sup>1</sup>H NMR spectra of 8r

|                                         | 66<br>66<br>66 |
|-----------------------------------------|----------------|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~           |
|                                         | Y L            |

<sup>CH3</sup> <sup>CH3</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



### <sup>1</sup>HNMR spectra of 8s

# $\begin{array}{c} 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\$



#### HRMS spectra of 8s

Monoisotopic Mass, Even Electron Ions 292 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 15-15 H: 17-17 N: 0-100 O: 0-100 Na: 0-1 25 240403-13-19 13 (0.083)



### <sup>1</sup>H NMR spectra of 8t





<sup>1</sup>H NMR spectra of **8u** 



#### HRMS spectra of 8u

Monoisotopic Mass, Even Electron Ions 830 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 15-15 H: 14-14 N: 0-100 O: 0-100 Na: 0-1 S: 1-4 F: 1-1



<sup>1</sup>H NMR spectra of 8v



### <sup>13</sup>C NMR spectra of 8v



### HRMS spectra of 8v

| Monoisotopic Mass, Even Electron Ions<br>2251 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)<br>Elements Used: |             |            |          |         |        |          |          |          |          |          |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|---------|--------|----------|----------|----------|----------|----------|-------------------------|
| C: 15-15 H                                                                                                                                                       | l: 14-14    | N: 0-100   | O: 0-100 | Na: 0-1 | S: 1-4 | CI: 1-5  |          |          |          |          |                         |
| 25<br>240403-13-22                                                                                                                                               | 10 (0.072)  |            |          |         |        |          |          |          |          | 1: "     | TOF MS ES+<br>3.49e+004 |
| 100-                                                                                                                                                             |             |            |          |         | 330    | .0334    |          |          |          |          |                         |
|                                                                                                                                                                  |             |            |          |         |        |          |          |          |          |          |                         |
| ~                                                                                                                                                                |             |            |          |         |        | 220      | 0.007    |          |          |          |                         |
| 1                                                                                                                                                                |             |            |          |         |        | 332      | 2.0307   |          |          |          |                         |
| 321.1                                                                                                                                                            | 148 323.224 | 0 324.0433 | 325.2312 | 328.08  | 71     | 331.0363 | 333.0315 | 334.0345 | 336.3307 | 338.3462 | 339.9927                |
| 320.0                                                                                                                                                            | 322.0       | 324.0      | 326.0    | 328.0   | 33     | 0.0 3    | 32.0 3   | 34.0     | 336.0    | 338.0    | 340.0                   |

### <sup>1</sup>H NMR spectra of 8w



#### HRMS spectra of 8w

Monoisotopic Mass, Even Electron Ions 1205 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 15-15 H: 14-14 N: 0-100 O: 0-100 Na: 0-1 S: 1-4 Br: 1-2

## 25 240403-13-23 11 (0.076)



#### <sup>1</sup>HNMR spectra of 8x





### <sup>13</sup>C NMR spectra of **8**x



#### HRMS spectra of 8x



<sup>1</sup>H NMR spectra of 8y



#### HRMS spectra of 8y

Monoisotopic Mass, Even Electron Ions 871 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 15-15 H: 21-21 N: 0-100 O: 0-100 Na: 0-1 S: 1-4 25 240403-13-25 17 (0.097) 1: TOF MS ES+ 2.30e+005 302.1196 100-<del>%</del>-303.1226 301.1413 304.1174 318.0931320.0934 320.0 330.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0 3 279.0958281.1733 288.9219 267.1561 0-310.0 270.0 300.0 280.0 290.0

#### <sup>1</sup>H NMR spectra of 8z



### <sup>1</sup>H NMR spectra of 8aa



#### HRMS spectra of 8aa

Monoisotopic Mass, Even Electron Ions 427 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 11-11 H: 15-15 N: 0-100 O: 0-100 Na: 0-1 S: 1-4 25 240403-13-27 10 (0.072)



#### <sup>1</sup>H NMR spectra of **8ab**



<sup>1</sup>H NMR spectra of 8ac







### <sup>1</sup>H NMR spectra of 8ae



<sup>1</sup>H NMR spectra of 8af





### <sup>1</sup>H NMR spectra of 8ag



<sup>1</sup>H NMR spectra of **8ah** 

# 





### <sup>1</sup>H NMR spectra of 8ai

#### 8.8.8 8.70 8.77 8.77 9.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 7.7.7 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.49 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.40 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7



<sup>1</sup>H NMR spectra of 8aj



### <sup>1</sup>H NMR spectra of **ak**





