Supplementary Information

Sustainable versatile chitin aerogels: Facile synthesis, structural control and high-efficiency acoustic absorption

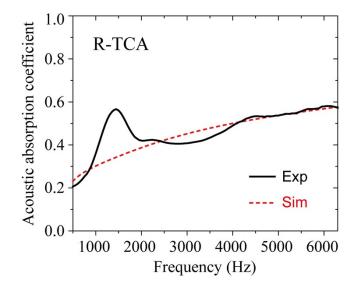
Jun-Nan Wan,^a Ju-Qi Ruan,^{*a,b} Qing-Yuan Chen,^a Jian-Cheng Jiang,^a Wei Guo,^a Xiaoqing Zuo,^c Chunlong Fei^d and Shanshan Yao^{*b}

^a School of Physics Science and Technology, Kunming University, Kunming 650214,

PR China

^b School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013,

PR China


^c Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, PR China

^d School of Microelectronics, Xidian University, Xi'an 710126, PR China

Address correspondence to E-mail: ruanjuqi@foxmail.com; yaosshan@ujs.edu.cn

This file includes:

Supplementary Figure S1 to S3

Fig. S1 Acoustic absorption performance of R-TCA. Exp represents the experimental result, and Sim is the simulated result obtained from the three-parameter JCAL model. Standard deviation of the most probable aperture is 0.60.

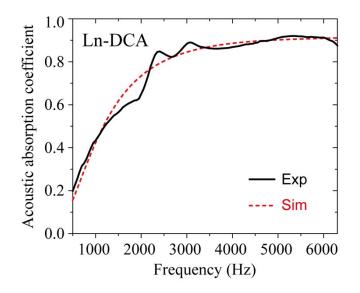
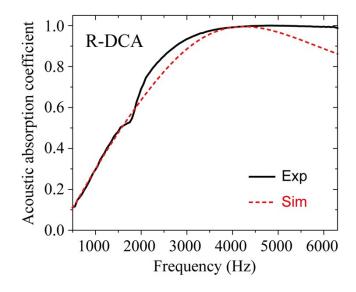



Fig. S2 Acoustic absorption performance of Ln-DCA. Exp represents the experimental

result, and Sim is the simulated result obtained from the three-parameter JCAL model. Standard deviation of the most probable aperture is 0.29.

Fig. S3 Acoustic absorption performance of R-DCA. Exp represents the experimental result, and Sim is the simulated result obtained from the three-parameter JCAL model. Standard deviation of the most probable aperture is 0.52.