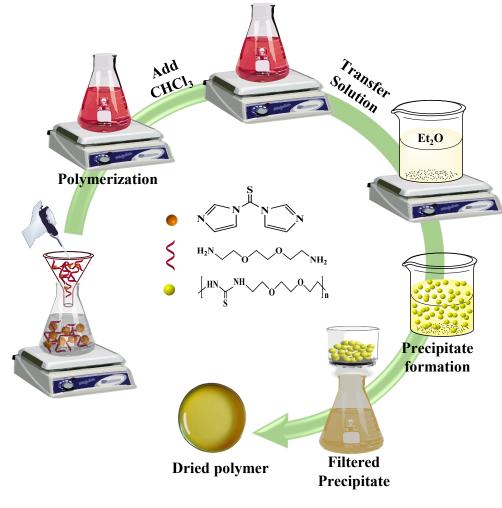
1 Endow Rubber with Intrinsic Self-Healing Property Using Thiourea-Based

```
2 Polymer
```

3 Afreen Shagufta, ^{a,b,c,d} Lei Wang, ^{a,c,d} Senbiao Fang, ^{a,c,d} Qingshan Kong, ^{*a,c,d} and Haibo


- 4 Zhang *a,c,d
- 5
- 6 aQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences,
- 7 Qingdao 266101, China.
- 8 ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.
- 9 °Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
- 10 ^dShandong Energy Institute, Qingdao 266101, China.
- 11
- 12 *Corresponding authors: Haibo Zhang (zhanghb@qibebt.ac.cn); Qingshan Kong
- 13 (kongqs@qibebt.ac.cn).
- 14
- 15 This Supplementary file includes:
- 16 Synthesis of PTUEG₃
- 17 Figures S1, S2
- 18 Supporting table S1
- 19

20 Synthesis of Thermoplastic polymer

Initially, PTUEG₃ was synthesized following the procedure described in previous literature 21 with some modifications (Fig. S1).¹ Specifically, 1,2-bis(2-aminoethoxy)ethane (160 mg) and 22 1,1'-thiocarbonyl diimidazole (175 mg) were dissolved in a 50 ml solution of DMF. The 23 resulting mixture was stirred at 30 °C for 2 h, followed by additional stirring at 25 °C for 24 24 h. Subsequently, 50 ml of chloroform was added to the solution, and the diluted mixture was 25 poured into 1 L of diethyl ether for precipitation. The resulting precipitate was dissolved in 26 50 ml of chloroform, and the mixture was then re-precipitated in 1 L of diethyl ether to obtain 27 the purified product. The insoluble fraction was collected after centrifugation for 15 min at a 28 29 speed of 5000 rpm, yielding PTUEG₃ in the form of a shimmery yellow gel. This precipitate was further dried in a vacuum oven at 140 °C for 12 h. The resulting yellow gel was then 30 cooled in a Teflon mold and processed to form a solid, transparent substance in a vacuum 31

32 oven at ambient temperature, resulting in a dry, solid polymer.

33

34

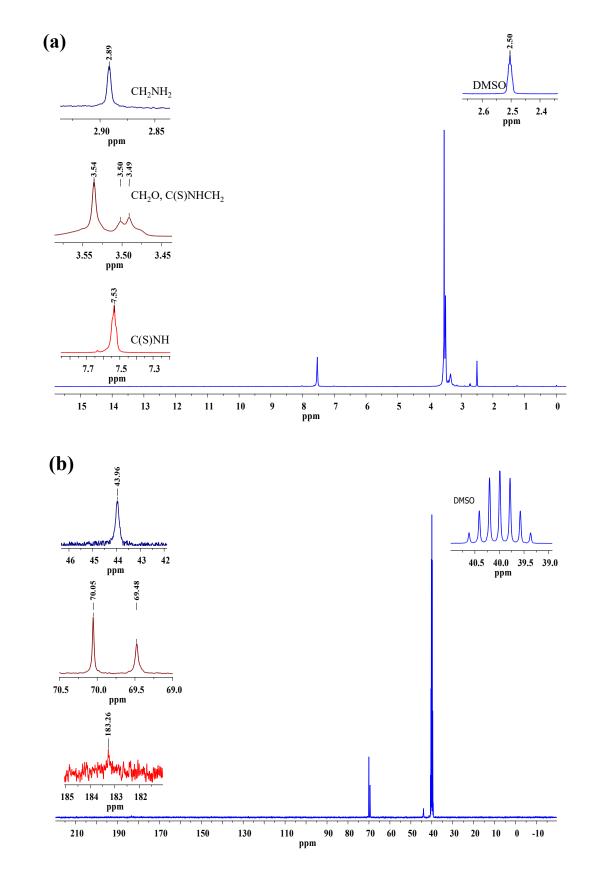

35

Fig. S1 Schematic representations of synthesis PTUEG₃

36

37 NMR spectra

PTUEG₃ was produced as a thermoplastic polymer and was characterized using ¹H and ¹³C 38 nuclear magnetic resonance (NMR) spectroscopy. As shown in (Fig. S2a), ¹H NMR end-39 group analysis at 500 MHz (DMSO-d₆) revealed multiple peak distributions of 2.89 (br, 40 CH₂NH₂), 3.49–3.54 (br, CH₂O, C(S) NHCH₂), and 7.53 (br, C(S) NH). However, a slight 41 shift of 0.05 ppm was observed, with the signal at 3.49 ppm shifting to a higher frequency at 42 3.54 ppm, attributed to the action of sulfur bonds. In (Fig. S2b), ¹³C NMR (125 MHz, 43 44 DMSO-d6) showed peaks at 43.96, 69.48, 70.05 and 183.26 with a repeat delay of 10s. The high concentration of the samples resulted in standard signal/noise ratios. The chemical shifts 45 (δ in ppm) were calculated using non-deuterated solvent residues. The average number of 46 repeating units was determined to be 50 based on the intensity ratio between the signals at δ 47 2.89 (2H br, CH_2NH_2) and 7.53 ppm (thiourea-H). 48

49

51 Fig. S2 (a) ¹H and ¹³C (b) NMR spectra for PTUEG₃ (DMSO-d₆, 298K). The signals at δ 2.50 52 (¹H) and 39.5–40.5 ppm (¹³C) are partially non-deuterated residues of DMSO-d6 and water.

53

54 Supporting table

55	Table S1:	Comparative	study of self-	-healing rubber	materials
00					

Rubber material	Healing time (hrs)	Stimulation	Tensile strength (MPa)	Elongation at break (%)	References
ENR-CNCs	24	RT	1.19	500	2
WNRPs-PSR	24	100 °C	1.15	220	3
ENR-CMCS-PDA-B-	24	60°C	1.64	777	4
SBR-BDB	24	80°C	2.68	200	5
ENR-t-CNs	24	RT	4.04	198	6
PBR-CuCl ₂	12	110 °C	4.0	530	7
SPB	12	RT	1.78	322	8
NR-MA-DGEBA	8	120 °C	1.2	250	9
SBR- C _{2.5} -GTR1	7	70°C	2.51	617	10
SBR-MWCNT-FA	5	100 °C	3.5	480	11
NR-g-MA	4	130 °C	1.47	325	12
ENR-CABt	3	150 °C	4.5	400	13
NR-ENR-PTUEG ₃	12	RT	4.83	833	This work

56

57 Notes and references

- 58 1. Y. Yanagisawa, Y. Nan, K. Okuro and T. Aida, Science, 2018, 359, 72-76.
- 59 2. J. Nie, W. Mou, J. Ding and Y. Chen, *Composites Part B: Engineering*, 2019, 172, 152 160.
- 61 3. J. Ye, S. Tan, H. Deng, W. Huang, H. Jin, L. Zhang, H. Xiang and M. Zhang, *Green Chemistry*, 2023, 25, 6327-6335.
- 63 4. J. Zhang, L. Cao and Y. Chen, *European Polymer Journal*, 2022, 168, 111103.
- 5. Y. Chen, Z. Tang, X. Zhang, Y. Liu, S. Wu and B. Guo, ACS applied materials & interfaces, 2018, 10, 24224-24231.
- 66 6. L. Cao, D. Yuan, C. Xu and Y. Chen, *Nanoscale*, 2017, 9, 15696-15706.
- 67 7. H. Xiang, H. Qian, Z. Lu, M. Rong and M. Zhang, *Green Chemistry*, 2015, 17, 4315 4325.
- 8. D. Wang, J. Guo, H. Zhang, B. Cheng, H. Shen, N. Zhao and J. Xu, *Journal of Materials Chemistry A*, 2015, 3, 12864-12872.

- 71 9. M. Pire, S. Norvez, I. Iliopoulos, B. Le Rossignol and L. Leibler, *Polymer*, 2011, 52, 5243-5249.
- 10. M. H. Santana, M. Huete, P. Lameda, J. Araujo, R. Verdejo and M. A. López-Manchado,
 European Polymer Journal, 2018, **106**, 273-283.
- 11. X. Kuang, G. Liu, X. Dong and D. Wang, *Macromolecular Materials and Engineering*,
 2016, 301, 535-541.
- 12. P. Tanasi, M. H. Santana, J. Carretero-González, R. Verdejo and M. A. López-Manchado,
- 78 *Polymer*, 2019, **175**, 15-24.
- 79 13. C. Xu, R. Cui, L. Fu and B. Lin, Composites Science and Technology, 2018, 167, 421 430.
- 81