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20 Synthesis of Thermoplastic polymer

21 Initially, PTUEG3 was synthesized following the procedure described in previous literature 

22 with some modifications (Fig. S1).1 Specifically, 1,2-bis(2-aminoethoxy)ethane (160 mg) and 

23 1,1′-thiocarbonyl diimidazole (175 mg) were dissolved in a 50 ml solution of DMF. The 

24 resulting mixture was stirred at 30 °C for 2 h, followed by additional stirring at 25 °C for 24 

25 h. Subsequently, 50 ml of chloroform was added to the solution, and the diluted mixture was 

26 poured into 1 L of diethyl ether for precipitation. The resulting precipitate was dissolved in 

27 50 ml of chloroform, and the mixture was then re-precipitated in 1 L of diethyl ether to obtain 

28 the purified product. The insoluble fraction was collected after centrifugation for 15 min at a 

29 speed of 5000 rpm, yielding PTUEG3 in the form of a shimmery yellow gel. This precipitate 

30 was further dried in a vacuum oven at 140 °C for 12 h. The resulting yellow gel was then 

31 cooled in a Teflon mold and processed to form a solid, transparent substance in a vacuum 
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32 oven at ambient temperature, resulting in a dry, solid polymer.
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35 Fig. S1 Schematic representations of synthesis PTUEG3 

36

37 NMR spectra

38 PTUEG3 was produced as a thermoplastic polymer and was characterized using 1H and 13C 
39 nuclear magnetic resonance (NMR) spectroscopy. As shown in (Fig. S2a), 1H NMR end-
40 group analysis at 500 MHz (DMSO-d6) revealed multiple peak distributions of 2.89 (br, 
41 CH2NH2), 3.49–3.54 (br, CH2O, C(S) NHCH2), and 7.53 (br, C(S) NH). However, a slight 
42 shift of 0.05 ppm was observed, with the signal at 3.49 ppm shifting to a higher frequency at 
43 3.54 ppm, attributed to the action of sulfur bonds. In (Fig. S2b), 13C NMR (125 MHz, 
44 DMSO-d6) showed peaks at 43.96, 69.48, 70.05 and 183.26 with a repeat delay of 10s. The 
45 high concentration of the samples resulted in standard signal/noise ratios. The chemical shifts 
46 (δ in ppm) were calculated using non-deuterated solvent residues. The average number of 
47 repeating units was determined to be 50 based on the intensity ratio between the signals at δ 
48 2.89 (2H br, CH2NH2) and 7.53 ppm (thiourea-H). 
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51 Fig. S2 (a) 1H and 13C (b) NMR spectra for PTUEG3 (DMSO-d6, 298K). The signals at δ 2.50 
52 (1H) and 39.5–40.5 ppm (13C) are partially non-deuterated residues of DMSO-d6 and water.

53



54 Supporting table

55 Table S1: Comparative study of self-healing rubber materials

Rubber material Healing 
time 
(hrs)

Stimulation Tensile 
strength 
(MPa)

Elongation at 
break (%)

References

ENR-CNCs 24  RT 1.19 500 2

WNRPs-PSR 24 100 °C 1.15 220 3

ENR-CMCS-PDA-B- 24 60℃ 1.64 777 4

SBR-BDB 24 80℃ 2.68 200 5

ENR-t-CNs 24 RT 4.04 198 6

PBR-CuCl2 12 110 °C 4.0 530 7

SPB 12 RT 1.78 322 8

NR-MA-DGEBA 8 120 °C 1.2 250 9

SBR- C2.5-GTR1 7 70℃ 2.51 617 10

SBR-MWCNT-FA 5 100 °C 3.5 480 11

NR-g-MA 4 130 °C 1.47 325 12

ENR-CABt 3 150 °C 4.5 400 13

NR-ENR-PTUEG3 12 RT 4.83 833 This work
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