Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

## **Supporting information**

## Low power density, high-efficiency Reflective Raman system for polymer SERS substrates

Lin Ding-Zheng,\*a Heng-I Chang,a Kai-Chun Tsia,a Yu-Ya Chunga

<sup>a</sup> Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, R.O.C.

\*E-mail: djsam@mail.ntust.edu.tw

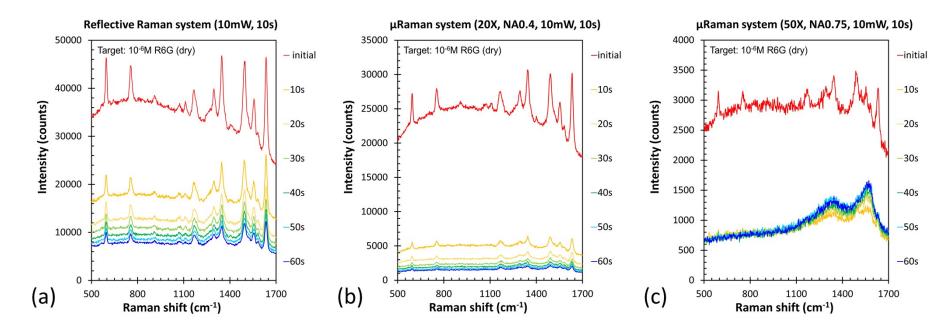



Fig. S1 The time dependence Raman spectra of  $10^{-6}$ M R6G on polymer SERS substrate by (a) RR system, (b) 20X, NA0.4  $\mu$ -Raman system, and (c) 50X, NA0.75  $\mu$ -Raman system. The 532nm laser power is 10 mW, and the integration time is 10 seconds.

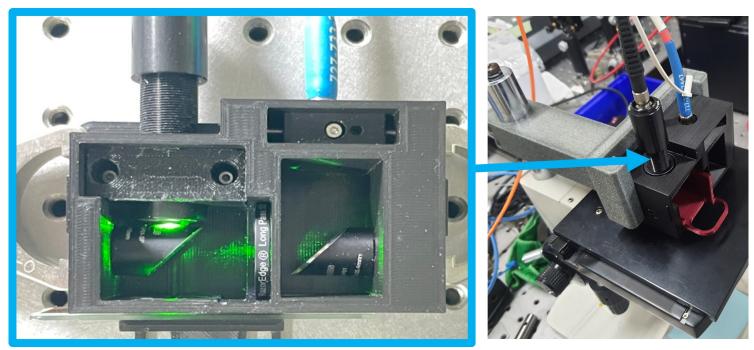



Fig. S2 The picture of our home-built RR system

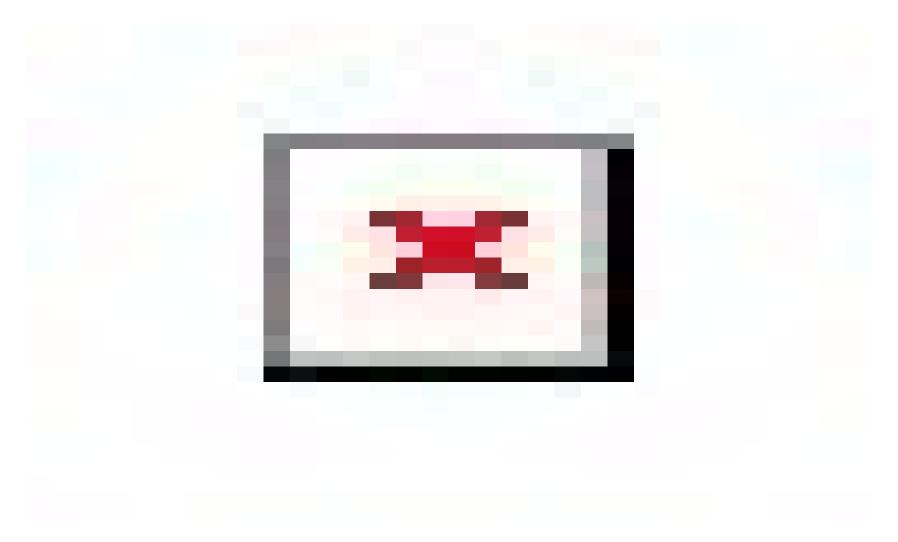
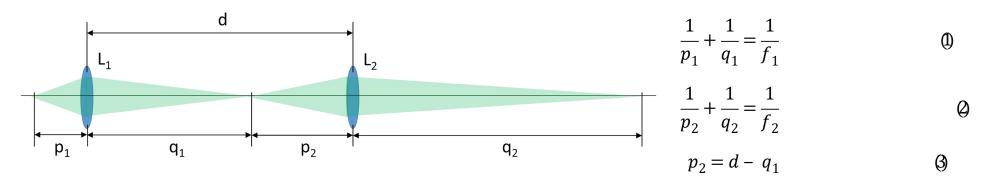




Fig. S3 The regression line of the Raman signal on polymer SERS substrate and the slope ratio between RR and  $\mu$ -Raman systems



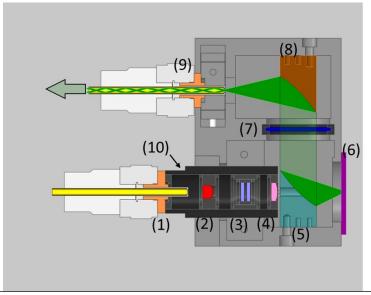

Based on the above image formation equation, if the focal length of the  $1^{st}$  and the  $2^{nd}$  aspherical lenses is 6.2mm ( $f_1$ ) and 18.4 mm ( $f_2$ ), and the core diameter of the fiber laser is 105 µm, we can calculate the magnifications and focusing spot diameters on sample surface listed in Table S2. We can adjust the spot diameter in the range of  $2.22\sim2.78$  times the fiber core size. In this article, we selected  $p_1$  close to 6 mm, and the theoretical spot size on the sample plane is about 275 µm.

Table. S1 Relation of spot size and lens position parameters.

| p <sub>1</sub> (mm) | d<br>(mm) | q <sub>1</sub> (mm) | p <sub>2</sub> (mm) | q <sub>2</sub> (mm) | magnification | spot diameter<br>(µm) |
|---------------------|-----------|---------------------|---------------------|---------------------|---------------|-----------------------|
| 6.10                | 50.49     | -378.20             | 428.69              | 19.23               | -2.78         | 292                   |
| 6.05                | 50.50     | -250.07             | 300.57              | 19.60               | -2.70         | 283                   |
| 6.00                | 50.51     | -186.00             | 236.51              | 19.95               | -2.62         | 275                   |
| 5.95                | 50.52     | -147.56             | 198.08              | 20.28               | -2.54         | 267                   |
| 5.90                | 50.53     | -121.93             | 172.46              | 20.60               | -2.47         | 259                   |
| 5.85                | 50.54     | -103.63             | 154.17              | 20.89               | -2.40         | 252                   |
| 5.80                | 50.55     | -89.90              | 140.45              | 21.17               | -2.34         | 245                   |
| 5.75                | 50.56     | -79.22              | 129.78              | 21.44               | -2.28         | 239                   |
| 5.70                | 50.57     | -70.68              | 121.25              | 21.69               | -2.22         | 233                   |

Table. S2 Components list of RR system

| #  | Component                                                                        | Part number                 |  |
|----|----------------------------------------------------------------------------------|-----------------------------|--|
| 1  | Fiber port (from laser)                                                          | Thorlabs, SM05FC            |  |
| 2  | 1 <sup>st</sup> aspherical lens                                                  | Thorlabs, C171TMD-A         |  |
| 3  | Laser-line filter                                                                | Semrock, LL01-532-12.5      |  |
| 4  | 2 <sup>nd</sup> aspherical lens                                                  | Thorlabs, C280TMD-A         |  |
| 5  | 1 <sup>st</sup> 90° off-axis parabolic mirror with a drilled hole (0.5", f=15mm) | Thorlabs, MPD00M9-P01-SP    |  |
| 6  | Sample (ex: silicon)                                                             | Mesophotonics, Klarite sCAL |  |
| 7  | Long-pass filter                                                                 | Semrock, LP03-532RU-25      |  |
| 8  | 2 <sup>nd</sup> 90° off-axis parabolic mirror (0.5", f=33mm)                     | Thorlabs, MPD01M9-P01       |  |
| 9  | Fiber port (to spectrometer)                                                     | Thorlabs, SM05SMA           |  |
| 10 | Adjustable lens tube                                                             | SM05V10 + SM05L10           |  |

