Supplementary Information

Deciphering the Influence of Pd^{II} and Pd^{IV} Oxidation State on Non-Standard Chemical Bonds within Bis(*j*N-Heterocyclic Carbene) Complexes: Insights from DFT

Jean Ongagna Moto^{a*}, Abel Idrice Adjieufack^{b*}, Simon Ngom Ndicka^a, Gaël Mouzong D'ambassa^a, Suzane Leonie Mazia Djendo ^a and Désiré Mama Bikele^a

 ^aComputational and Theoretical Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon;
 ^bPhysical and Theoretical Chemistry Laboratory, University of Yaoundé I P.O. Box 812 Yaoundé, Cameroon.

> E-mail: jean.monfils@yahoo.fr adjieufack21@gmail.com

Table of content

Table 1S. NBO atomic charges (Q/e) of the CjNHC carbon atom and Pdi+ ion in isolated moieties[bis(jNHC) and PdXi] and in each complex[1a, 2a, 1n, 2a, 3a, 4a, 3n and 4n]	2
Table 2S. Palladium Natural Electron Configuration in different complexes.	2
Table 3S. Natural Hybrid Orbital (NHO) Analysis of Pd-X bond in different complexes	3
Figure 1S. Total (black), partial [red (C_{jNHC} , blue (Pd^{4+} , and magenta ($Cl \lor Br$), and overla [green, between C_{jNHC} and Pd^{4+} and $X(X = Cl \lor Br)$ basis functions] density-of-states map $C_{La}[Ln]Pd^{IV}X_4$ complexes.	ւթ of 4
Figure 2S. Natural Population Analysis (NPA) charges on the C_{jNHC} atom (bis(jNHC)) and I (PdXi) isolated moieties and their difference in 1-4a(n) complexes.	Pd ⁱ⁺
Figure 3S. The second-order perturbation energy stabilization (E^2) for each donor NBO (i) acceptor NBO(j) from the lone pair Pd to $C_{nNHC}N$ or $C_{aNHC}N$ bond in all complexes	and 5
Figure 4S. Local region basin analysis on C_{jNHC} -Pd and Pd-X in only 3a and 4n bis(aNHC)[bis(nNHC)]Pd ^{IV} X ₄ complexes	5

		in Complex		in PdXi		in Bis(jNHC)	
Complexes		Pd^{i+}	C _{jNHC}	Pd^{2+}	Pd^{4+}	C _{nNHC}	C _{aNHC}
X = Cl	1n	-0.01	0.32	0.53			
	1a	0.04	0.02		-		
X = Br	2n	-0.18	0.32	0.44	-	0.14	-
	2a	-0.16	0.02				
X = Cl	3n	-0.08	0.39	-	0.44		
	3a	-0.02	0.10				0.10
V D	4n	-0.33	0.38		0.19] -	-0.18
X = Br	4a	-0.27	0.09] -	0.18		

Table 1S. NBO atomic charges (Q/e) of the CjNHC carbon atom and Pdi+ ion in isolated moieties[bis(jNHC) and PdXi] and in each complex[1a, 2a, 1n, 2a, 3a, 4a, 3n and 4n].

 Table 28. Palladium Natural Electron Configuration in different complexes.

Species	Natural Electron Configuration	Isoleted state
ln	[core]5S(0.41)4d(9.02)5p(0.29)5d(0.01)6p(0.21)	
1a	[core]5S(0.40)4d(9.01)5p(0.28)5d(0.01)6p(0.19)	
2n	[core]5S(0.42)4d(9.07)5p(0.31)5d(0.01)6p(0.23)	
2a	[core]5S(0.41)4d(9.06)5p(0.29)5d(0.01)6p(0.21)	[a a m a] 1 d(9,00)
3n	[core]5S(0.38)4d(8.73)5p(0.32)5d(0.01)6p(0.64)	[0010]40(0.00)
3a	[core]5S(0.36)4d(8.71)5p(0.32)5d(0.01)6p(0.62)	
4n	[core]5S(0.42)4d(8.85)5p(0.70)5d(0.01)6p(0.36)	
4a	[core]5S(0.40)4d(8.83)5p(0.68)5d(0.01)6p(0.35)	

Comp	0	Polarizability		Hybridation		
•	Occu.	Pd	X/X'X ^{eq} /X ^{eq} '	Pd	X/X ^{eq} /X ^{eq} '	
1n	1.90	18.34%	81.66%	s(23.44%),p(52.83%),d(23.73%)	s(15.35%),p(84.65%)	
	1.90	18.34%	81.66%	s(23.44%),p(52.83%),d(23.73%)	s(15.35%),p(84.65%)	
	-	-	-	-	-	
	-	-	-	-	-	
	1.89	21.04%	78.96%	s(23.23%),p(53.33%),d(23.44%)	s(14.26%),p(85.74%)	
2-	1.89	21.04%	78.96%	s(23.23%),p(53.33%),d(23.44%)	s(14.26%),p(85.74%)	
211	-	-	-	-	-	
	-	-	-	-	-	
	1.86	27.13%	72.87%	s(15.19%),p(52.71%),d(32.10%)	s(10.71%),p(89.29%)	
	1.86	27.13%	72.87%	s(15.19%),p(52.71%),d(32.10%)	s(10.71%),p(89.29%)	
3n	1.83	29.12%	70.88%	s(16.23%),p(49.61%),d(34.16%)	s(9.00%),p(91.00%)	
	1.83	28.46%	71.54%	s(15.89%),p(50.24%),d(33.88%)	s(9.40%),p(90.60%)	
	1.84	31.82%	68.18%	s(14.40%),p(53.15%),d(32.45%)	s(9.28%),p(90.72%)	
4 m	1.84	31.82%	68.18%	s(14.40%),p(53.15%),d(32.45%)	s(9.28%),p(90.72%)	
4 n	1.81	32.99%	67.01%	s(16.84%),p(49.79%),d(33.36%)	s(7.98%),p(92.02%)	
	1.81	31.94%	68.06%	s(16.79%),p(50.19%),d(33.03%)	s(8.34%),p(91.66%)	
	1.91	17.26%	82.74%	s(23.41%),p(53.70%),d(22.89%)	s(16.25%),p(83.75%)	
10	1.91	17.26%	82.74%	s(23.41%),p(53.70%),d(22.89%)	s(16.25%),p(83.75%)	
1a	-	-	-	-	-	
	-	-	-	-	-	
	1.90	19.61%	80.39%	s(23.22%),p(54.12%),d(22.67%)	s(15.15%),p(84.85%)	
20	1.90	19.61%	80.39%	s(23.22%),p(54.12%),d(22.67%)	s(15.15%),p(84.85%)	
2a	-	-	-	-	-	
	-	-	-	-	-	
	1.87	24.93%	75.07%	s(15.46%),p(54.22%),d(30.32%)	s(12.19%),p(87.81%)	
30	1.87	24.93%	75.07%	s(15.46%),p(54.22%),d(30.32%)	s(12.19%),p(87.81%)	
- 3a	1.84	26.73%	73.27%	s(15.99%),p(50.66%),d(33.36%)	s(10.02%),p(89.98%)	
	1.82	29.18%	70.82%	s(16.09%),p(49.10%),d(34.81%)	s(9.08%),p(90.92%)	
	1.86	29.14%	70.86%	s(14.81%),p(54.64%),d(30.55%)	s(10.80%),p(89.20%)	
4a	1.86	29.14%	70.86%	s(14.81%),p(54.64%),d(30.55%)	s(10.80%),p(89.20%)	
	1.82	30.38%	69.62%	s(16.86%),p(50.55%),d(32.58%)	s(8.97%),p(91.03%)	
	1.80	32.76%	67.24%	s(16.91%),p(49.27%),d(33.83%)	s(8.21%,)p(91.79%)	

 Table 3S. Natural Hybrid Orbital (NHO) Analysis of Pd-X bond in different complexes.

Figure 1S. Total (black), partial [red (C_{jNHC} , blue (Pd^{4+} , and magenta ($Cl \vee Br$), and overlap [green, between C_{jNHC} and Pd^{4+} and $X(X = Cl \vee Br)$ basis functions] density-of-states map of $La[Ln]Pd^{IV}X_4$ complexes.

Figure 2S. Natural Population Analysis (NPA) charges on the C_{jNHC} atom (bis(jNHC)) and Pdⁱ⁺ (PdXi) isolated moieties and their difference in 1-4a(n) complexes.

Figure 3S. The second-order perturbation energy stabilization (E^2) for each donor NBO (i) and acceptor NBO(j) from the lone pair Pd to C_{nNHC} ...N or C_{aNHC} ...N bond in all complexes.

Figure 4S. Local region basin analysis on C_{jNHC} -Pd and Pd-X in only 3a and 4n bis(aNHC)[bis(nNHC)]Pd^{IV}X₄ complexes.