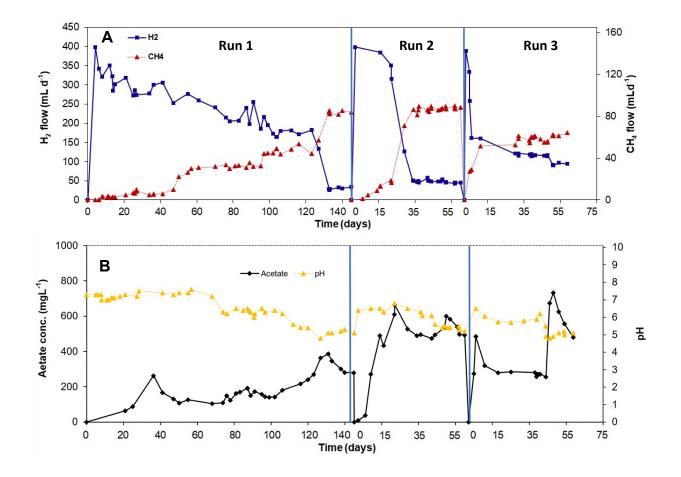

Supplementary information

S1. MES setup diagram


Figure S1. Schematic representation of a MES cell with continuous carbonate supply. The dotted line denotes PEM. Figure adapted from Gomez Vidales et al³⁷.

S2. Energy consumption and coulombic efficiency calculation

The energy consumption (E_{H2}), per litre of equivalent hydrogen (Wh L_{H2}^{-1}), and the Coulombic efficiency (CE) were determined as follows:

$$E_{H_2} = \frac{VIt}{\sum_i v_i Q_i}$$
(1)
$$CE (\%) = \frac{FN \sum_i n_i C_i}{\int_{t=0}^{t} Idt} 100,$$
(2)

where *V* is the voltage (V), *I* is the current (A), and *t* is the time (day). Q_i is the flow rate of cathodic products (L d⁻¹), *i* is the cathodic product (i.e., CH₄, H₂, acetate), and v_i represents the stoichiometric amount of H₂ necessary to form the given products (mol mol⁻¹), which is 4 for both CH₄ and acetate. For Equation. (2), *F* is the Faraday constant (96485 C mol⁻¹), while *N* is the total amount of cathodic products (in mol), n_i defines the equivalent mole of electron required per mole of generated i-th product (n_i is 2 for H₂ generation and 8 for CH₄ and acetate), and C_i delineats the mole fraction of i in the product (mol mol⁻¹).

Figure S2: Time dependence of (A) CH_4 and H_2 production rate, (B) Acetate concentration and pH in the cathode compartment of MES-1 cell.

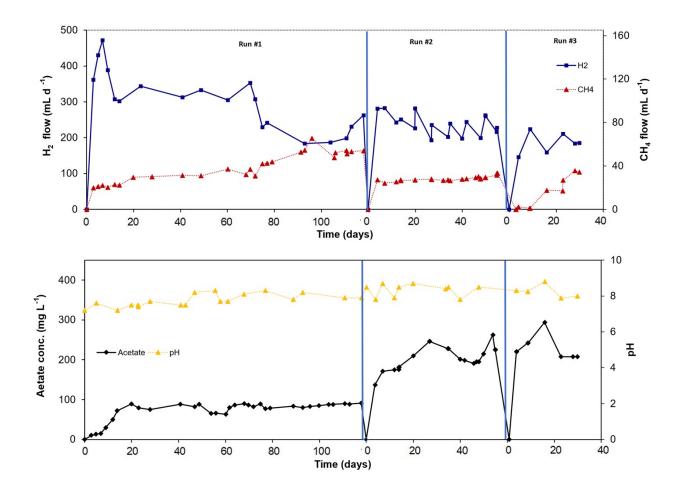


Figure S3: Time dependence of (A) CH_4 and H_2 production rate, (B) Acetate concentration and pH in the cathode compartment of MES-2 cell.