Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary information (ESI)

Microwave-assisted synthesis and functionalization of 2-arylimidazo[1,2-*a*]pyrimidin-5(8*H*)-ones

Delascar Camargo,^a Carlos Cifuentes,^a Juan-Carlos Castillo,^{a,b} and Jaime Portilla*^a

^a Bioorganic Compounds Research Group, Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia

^b Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Colombia

*E-mail: jportill@uniandes.edu.co; Tel: +57 1 3394949. Ext. 2080

Contents

1.	Overview of substrates and products numbering	S2
2.	Experimental details	S 3
3.	Copies of NMR spectra	S12
4.	Photophysical and crystallographic details	. S 41
5.	References	.S41

1. Overview of substrates and products numbering

(a) Substrates/reagents. 6-methylisocytosine (3), acetophenones 7a-e, alkyl bromides 5a-c, bromine, and α-bromoacetophenones 2a-e.

(b) 2-Aryl-7-methylimidazo[1,2-a]pyrimidin-5(8H)-ones 4a-e

(c) 2-Aryl-7-methylimidazo[1,2-a]pyrimidin-5(8H)-ones 4a-e

Fig. S1 Structures of (a) commercial (top) and synthetics (bottom) substrate/reagents, (b) 2-aryl-7-methylimidazo[1,5*a*]pyrimidones **4a-e**, and (c) 2-aryl-3,6-dibromo-7-methyl-8-propylimidazo[1,5-*a*]pyrimidones **4a-e**

Fig. S2 Structure of N-alkylated 2-aryl-7-methylimidazo[1,5-a]pyrimidones 6a-p

2. Experimental details

2.1. Reagents and materials

Reagents were acquired from commercial sources, used without further purification, and weighed and handled in air at room temperature (r.t.). Reactions were monitored by thin-layer chromatography (TLC) and visualized by a UV lamp (254/365 nm). Silica gel (230-400 mesh) for flash chromatography was used. Reactions under MW irradiation were carried out in a sealed reaction vessel (10.0 mL, max pressure = 300 psi) containing a Teflon-coated stir bar (obtained from CEM) and were performed in a CEM Discover SP-focused MW (v = 2.45 GHz) reactor equipped with a built-in pressure measurement sensor and a vertically focused IR temperature sensor. Controlled temperature, power, and time settings were used.

NMR spectra were recorded at 400 MHz (¹H) and 101 MHz (¹³C) at 298 K, and data were recorded in CDCl₃ (7.26/77.0 ppm) or DMSO (2.50/39.5 ppm) using the residual nondeuterated signal for ¹H and the deuterated solvent signal for ¹³C NMR as internal standards. Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (*J*) in Hertz (Hz). The multiplicity abbreviations involve s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. Melting points were measured by a capillary melting point device, and data were uncorrected. High-resolution mass spectra (HRMS) were recorded by a Q-TOF spectrometer using electrospray ionization (ESI). Crystallographic data were recorded on a diffractometer using graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Structures were solved by direct methods in SHELXS-97.¹

2.2. General procedure and characterization data

2.2.1. Synthesis of α -bromoacetophenones 2a-e.

To a mixture of acetophenone **7a-e** (5.00 mmol) and Amberlite MB-1[®] (500 mg) in ethanol (10 mL) cooled by an ice bath, bromine (5.5 mmol to 99.5%, 883 mg) was added slowly, and it stirred first for 15 min and then more time at room temperature. After the completion of the reaction in around 2 h (monitored by TLC), it was filtered off and washed with ethanol (2 × 2.5 mL). Then, water was added (5 mL) to the filtered solution, and the mixture was extracted with DCM (3 × 30 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated under vacuum giving **2a-d** as white solids, **2e** is a yellow solid. NMR data for **2a-e** matched the reported data in the literature.^{2,3}

2-Bromoacetophenone (**2a**): 965 mg (97%), mp: 49–50 °C (Lit.² 43–45 °C). ¹H NMR (400 MHz, CDCl₃): δ = 4.46 (s, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.99 (d, J = 8.4 Hz, 2H) ppm.

2-Bromo-4'-chloroacetophenone (**2b**): 1167 mg (quantitative), mp: 96–97 °C (Lit.² 96–98 °C). ¹H NMR (400 MHz, CDCl₃): δ = 4.41 (s, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 2H) ppm.

2,4'-Dibromoacetophenone (**2c**): 1.39 g (quantitative), Mp: 107–108 °C (Lit.⁴ 106–108 °C). ¹H NMR (400 MHz, CDCl₃): δ = 4.46 (s, 2H), 7.64 (d, *J* = 8.7 Hz, 2H), 7.86 (d, *J* = 8.7 Hz, 2H) ppm.

2-Bromo-4'-methoxyacetophenone (**2d**): 955 mg (96%), Mp: 70–71 °C (Lit.² 70–72 °C). ¹H NMR (400 MHz, CDCl₃): δ = 4.40 (s, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 7.86 (d, *J* = 8.8 Hz, 2H) ppm.

2-Bromo-4'-nitroacetophenone (**2e**): 1.22 g (quantitative), Mp: 90–91 °C (Lit.⁴ 91–93 °C). ¹H NMR (400 MHz, DMSO): δ = 4.50 (s, 2H), 7.91 (t, *J* = 8.2 Hz, 2H), 8.21 (t, *J* = 8.1 Hz, 2H) ppm.

2.2.2. Synthesis of 2-aryl-7-methylimidazo[1,2-a]pyrimidin-5(8H)-ones 4a-e.

An equimolar mixture of 2-amino-4-hydroxy-6-methylpyrimidine (**3**, 1.0 mmol, 125 mg) and the appropriate α -bromoketone **2a-e** in DMF (2.0 mL) was subjected to microwave irradiation at 160 °C (170 W programmed but ~20% of this was necessary and constant. Temperature monitored by an IR sensor) for 30 min in a sealed tube containing a Teflon-coated magnetic stirring bar. The resulting reaction mixture was cooled to 55 °C by airflow, and the precipitated product formed upon the addition of cold water (3.0 mL) was filtered, washed with cold ethanol (2 × 2 mL), and dried under a high vacuum for one hour at 60 °C to give the pure products **4a-e** as yellowish-white solids. Compounds **4a-e** metched previously reported data.^{5–7}

7-Methyl-2-phenylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (4a) was obtained in 83% yield (187 mg) from 2-bromoacetophenone (2a, 198 mg, 1.00 mmol). Mp > 300 °C (amorphous, Lit.⁵ 315–317 °C). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 2.29 (s, 3H), 5.64 (s, 1H), 7.31 (t,** *J* **= 7.6 Hz, 1H), 7.42 (t,** *J* **= 7.7 Hz, 2H), 7.90 (d,** *J* **= 7.7 Hz, 2H), 8.05 (s, 1H), 12.85 (br s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-***d***₆): \delta = 19.8 (CH₃), 95.2 (CH), 103.5 (CH), 125.2 (CH), 127.8 (CH), 128.6 (CH), 132.1 (C), 137.9 (C), 144.1 (C), 153.5 (C), 157.0 (C) ppm.**

2-(4-Chlorophenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (4b) was obtained in 80% yield (208 mg) from 2-bromo-4'-chloroacetophenone (2b**, 236 mg, 1.01 mmol). Mp > 300 °C (amorphous, Lit.⁶ > 300 °C) [2]. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.29 (s, 3H), 5.63 (s, 1H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.91 (d, *J* = 8.6 Hz, 2H), 8.10 (s, 1H), 12.82 (br s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ = 19.3 (CH₃), 95.0 (CH), 104.2 (CH), 126.8 (CH), 128.6 (CH), 131.6 (C), 132.1 (C), 137.5 (C), 143.8 (C), 151.7 (C), 157.0 (C) ppm.

2-(4-Bromophenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (4c) was obtained in 80% yield (243 mg) from 2-bromo-4'-bromoacetophenone (2c**, 278 mg, 1.00 mmol). Mp > 300 °C (amorphous, Lit.⁷ > 300 °C) [3]. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.29 (s, 3H), 5.63 (s, 1H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.85 (d, *J* = 7.7 Hz, 2H), 8.11 (s, 1H), 12.82 (br s, 1H) ppm. ¹³C{1H} NMR (101 MHz, DMSO-*d*₆): δ = 19.3 (CH₃), 95.0 (CH), 104.2 (CH), 120.6 (C), 127.1 (CH), 131.5 (CH), 131.7 (C), 137.3 (C), 143.7 (C), 152.2 (C), 157.0 (C) ppm.

2-(4-Methoxyphenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (4d) was obtained in 85% yield (217 mg) from 2-bromo-4'-methoxyacetophenone (2d, 234 mg, 1.02 mmol). Mp > 300 °C (amorphous, Lit.⁷ > 300 °C). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 2.29 (s, 3H), 3.79 (s, 3H), 5.64 (s, 1H), 6.99 (d,** *J* **= 8.7 Hz, 2H), 7.83 (d,** *J* **= 8.7 Hz, 2H), 7.93 (s, 1H), 12.74 (br s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-***d***₆): \delta = 20.1 (CH₃), 55.1 (CH₃), 95.4 (CH), 102.1 (CH), 114.2 (CH), 124.2 (C), 126.6 (CH), 137.0 (C), 144.2 (C), 153.9 (C), 157.0 (C), 159.1 (C) ppm.**

2-(4-Nitrophenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (4e) was obtained in 75% yield (217 mg) from 2-bromo-4'-nitroacetophenone (2e, 249 mg, 1.02 mmol). Mp 281–282 °C (amorphous, Lit.⁷ > 300 °C). ¹H NMR (400 MHz, DMSO-***d***₆): \delta = 2.30 (s, 3H), 5.63 (s, 1H), 8.12 (d, J = 8.8 Hz, 2H), 8.21 (d, J = 8.8 Hz, 2H), 8.30 (s, 1H), 12.89 (br s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-***d***₆): \delta = 19.0 (CH3), 94.9 (CH), 106.9 (CH), 123.9 (CH), 125.8 (CH), 137.6 (C), 139.6 (C), 143.8 (C), 146.2 (C), 152.2 (C), 157.0 (C) ppm.**

2.2.3. Synthesis of 8-alkyk-2-aryl-7-methylimidazo[1,2-a]pyrimidin-5(8H)-ones 6a-p.

A mixture of 2-aryl-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one **4a-e** (0.50 mmol), K₂CO₃ (104 mg, 0.75 mmol), and alkyl bromide **5a-d** (0.75 mmol) in DMF (1.0 mL) was subjected to microwave irradiation at 100 °C (110 W programmed but ~15% of this was necessary and constant. Temperature monitored by an IR sensor) for 15 min in a sealed tube containing a Teflon-coated magnetic stirring bar. The resulting reaction mixture was cooled to 55 °C by airflow, and the precipitated product formed after adding cold water (2.0 mL) was subjected to extraction with dichloromethane (3 × 10 mL). The organic phase was dried over anhydrous MgSO₄, filtered, and concentrated under vacuum giving **6a-p** as white solids. 2-(4-Chlorophenyl) derivatives were characterized by comparing their data with information available in the literature, that is, NMR data for **6b** (*n*Pr), **6g** (*n*Bu), **6l** (Bn), and **6p** (ester) matched previously reported data.⁷

7-Methyl-2-phenyl-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6a) was obtained in 85% yield (116 mg) from 7-methyl-2-phenylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4a, 115 mg, 0.51 mmol) and 1-bromopropane (5a, 70 \muL, 0.77 mmol). Mp 145–146 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.05 (t,** *J* **= 7.2 Hz, 3H), 1.84-1.94 (m, 2H), 2.41 (s, 3H), 4.25 (t,** *J* **= 7.7 Hz, 2H), 5.67 (s, 1H), 7.30 (t,** *J* **= 7.5 Hz, 1H), 7.40 (t,** *J* **= 7.5 Hz, 2H), 7.86 (s, 1H), 7.88 (d,** *J* **= 8.1 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 11.1 (CH₃), 19.2 (CH₃), 21.9 (CH₂), 48.3 (CH₂), 97.7 (CH), 104.5 (CH), 125.6 (CH), 127.8 (CH), 128.6 (CH), 133.1 (C), 141.2 (C), 143.7 (C), 150.0 (C), 157.1 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₈N₃O⁺, 268.1444 [M + H]⁺; found, 268.1450.**

2-(4-Chlorophenyl)-7-methyl-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6b)** was obtained in 92% yield (139 mg) from 2-(4-chlorophenyl)-7-methylimidazo[1,2-*a*]**pyrimidin-5(8***H***)-one (4b, 130 mg, 0.50 mmol)** and 1-bromopropane (**5a**, 70 µL, 0.77 mmol). Mp 159–160 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.03 (t, *J* = 7.5 Hz, 3H), 1.84-1.91 (m, 2H), 2.40 (s, 3H), 4.22 (t, *J* = 7.8 Hz, 2H), 5.65 (s, 1H), 7.34 (d, *J* = 8.6 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.80 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 11.1 (CH₃), 19.1 (CH₃), 21.9 (CH₂), 48.3 (CH₂), 97.7 (CH), 104.6 (CH), 126.8 (CH), 128.7 (CH), 131.7 (C), 133.4 (C), 140.2 (C), 143.8 (C), 150.1 (C), 156.9 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₇³⁵ClN₃O⁺, 302.1055 [M + H]⁺; found, 302.1045.⁷

2-(4-Bromophenyl)-7-methyl-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6c)** was obtained in 95% yield (164 mg) from 2-(4-bromophenyl)-7-methylimidazo[1,2-*a*]**pyrimidin-5(8***H***)-one (4c, 152 mg, 0.50 mmol)** and 1-bromopropane (**5a**, 70 µL, 0.77 mmol). Mp 154–155 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.05 (t, *J* = 7.4 Hz, 3H), 1.86-1.96 (m, 2H), 2.43 (s, 3H), 4.25 (t, *J* = 7.5 Hz, 2H), 5.68 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.84 (br s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 11.1 (CH₃), 19.2 (CH₃), 22.0 (CH₂), 48.4 (CH₂), 97.8 (CH), 104.8 (CH), 121.6 (C), 127.2 (CH), 131.7 (CH), 132.2 (C), 140.3 (C), 143.9 (C), 150.1 (C), 157.0 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₇⁷⁹BrN₃O⁺, 346.0550 [M + H]⁺; found, 346.0538.

2-(4-Methoxyphenyl)-7-methyl-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6d) was obtained in 80% yield (119 mg) from 2-(4-methoxyphenyl)-7-methylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4d, 128 mg, 0.50 mmol) and 1-bromopropane (5a, 70 µL, 0.77 mmol). Mp 114–115 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.06 (t,** *J* **= 7.3 Hz, 3H), 1.87-1.95 (m, 2H), 2.43 (s, 3H), 3.84 (s, 3H), 4.28 (t,** *J* **= 7.5 Hz, 2H), 5.69 (s, 1H), 6.95 (d,** *J* **= 8.8 Hz, 2H), 7.76 (s, 1H), 7.82 (d,** *J* **= 8.8 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 11.1 (CH₃), 19.2 (CH₃), 22.0 (CH₂), 48.4 (CH₂), 55.3 (CH₃), 97.8 (CH), 103.5 (CH), 114.1 (CH), 125.9 (C), 127.0 (CH), 141.2 (C), 143.7 (C), 149.7 (C), 157.1 (C), 159.5 (C) ppm. HRMS (ESI+): calcd for C₁₇H₂₀N₃O₂⁺, 298.1550 [M + H]⁺; found, 298.1552.**

7-Methyl-2-(4-nitrophenyl)-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6e)** was obtained in 75% yield (117 mg) from 7-methyl-2-(4-nitrophenyl)imidazo[1,2-*a*]**pyrimidin-5(8***H***)-one (4e**, 135 mg, 0.50 mmol) and 1-bromopropane (5a, 70 µL, 0.77 mmol). Mp 224–225 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.06 (t, *J* = 7.5 Hz, 3H), 1.87-1.94 (m, 2H), 2.45 (s, 3H), 4.26 (t, *J* = 7.7 Hz, 2H), 5.70 (s, 1H), 7.97 (s, 1H), 8.00 (d, *J* = 9.0 Hz, 2H), 8.23 (d, *J* = 9.0 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 11.1 (CH₃), 19.3 (CH₃), 22.0 (CH₂), 48.4 (CH₂), 98.0 (CH), 106.9 (CH), 124.0 (CH), 126.1 (CH), 139.1 (C), 139.6 (C), 144.2 (C), 147.0 (C), 150.8 (C), 156.8 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₇N₄O₃⁺, 313.1295 [M + H]⁺; found, 313.1300.

8-Butyl-7-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6f) was obtained in 80% yield (87 mg) from 7-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (4a, 115 mg, 0.51 mmol) and 1-bromobutane (5b, 80 μL, 0.74 mmol). Mp 145–146 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.01 (t, *J* = 7.4 Hz, 3H), 1.42– 1.53 (m, 2H), 1.81-1.86 (m, 2H), 2.40 (s, 3H), 4.29 (t, *J* = 7.7 Hz, 2H), 5.66 (s, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.86 (s, 1H), 7.88 (d, *J* = 7.6 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 13.7 (CH₃), 19.2 (CH₂), 20.0 (CH₃), 30.7 (CH₂), 46.7 (CH₂), 97.8 (CH), 104.6 (CH), 125.7 (CH), 127.9 (CH), 128.6 (CH), 133.2 (C), 141.3 (C), 143.8 (C), 150.0 (C), 157.1 (C) ppm. HRMS (ESI+): calcd for C₁₇H₂₀N₃O⁺, 282.1601 [M + H]⁺; found, 282.1598.

8-Butyl-2-(4-chlorophenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6g) was obtained in 82% yield (129 mg) from 2-(4-chlorophenyl)-7-methylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4b, 130 mg, 0.50 mmol) and 1-bromobutane (5b, 80 μL, 0.74 mmol). Mp 116–117 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.02 (t,** *J* **= 7.4 Hz, 3H), 1.45-1.52 (m, 2H), 1.81-1.86 (m, 2H), 2.43 (s, 3H), 4.29 (t,** *J* **= 7.8 Hz, 2H), 5.68 (s, 1H), 7.37 (d,** *J* **= 8.5 Hz, 2H), 7.80 (d,** *J* **= 8.5 Hz, 2H), 7.83 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 13.7 (CH₃), 19.2 (CH₃), 20.0 (CH₂), 30.7 (CH₂), 46.7 (CH₂), 97.9 (CH), 104.7 (CH), 126.9 (CH), 128.8 (CH), 131.7 (C),**

133.5 (C), 140.2 (C), 143.8 (C), 150.1 (C), 157.0 (C) ppm. HRMS (ESI+): calcd for C₁₇H₁₉³⁵ClN₃O⁺, 316.1211 [M + H]⁺; found, 316.1215.⁷

2-(4-Bromophenyl)-8-butyl-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6h)** was obtained in 91% yield (164 mg) from 2-(4-bromophenyl)-7-methylimidazo[1,2-*a*]**pyrimidin-5(8***H***)-one (4c, 152 mg, 0.50 mmol)** and 1-bromobutane (**5b**, 80 µL, 0.74 mmol). Mp 130–131 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.02 (t, *J* = 7.3 Hz, 3H), 1.45-1.51 (m, 2H), 1.81–1.86 (m, 2H), 2.43 (s, 3H), 4.28 (t, *J* = 7.7 Hz, 2H), 5.68 (s, 1H), 7.52 (d, *J* = 8.6 Hz, 2H), 7.74 (d, *J* = 8.6 Hz, 2H), 7.84 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 13.7 (CH₃), 19.2 (CH₃), 20.0 (CH₂), 30.7 (CH₂), 46.7 (CH₂), 97.8 (CH), 104.8 (CH), 121.6 (C), 127.2 (CH), 131.7 (CH), 132.2 (C), 140.2 (C), 143.8 (C), 150.1 (C), 157.0 (C) ppm. HRMS (ESI+): calcd for C₁₇H₁₉⁷⁹BrN₃O⁺, 360.0706 [M + H]⁺; found, 360.0710.

8-Butyl-2-(4-methoxyphenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6i) was obtained in 82% yield (128 mg) from 2-(4-methoxyphenyl)-7-methylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4d, 128 mg, 0.50 mmol) and 1-bromobutane (5b, 80 μL, 0.74 mmol). Mp 99–100 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.02 (t,** *J* **= 7.3 Hz, 3H), 1.43-1.52 (m, 2H), 1.81-1.88 (m, 2H), 2.43 (s, 3H), 3.85 (s, 3H), 4.32 (t,** *J* **= 7.7 Hz, 2H), 5.69 (s, 1H), 6.96 (d,** *J* **= 8.8 Hz, 2H), 7.77 (s, 1H), 7.82 (d,** *J* **= 8.8 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 13.7 (CH₃), 19.1 (CH₃), 20.0 (CH₂), 30.8 (CH₂), 46.8 (CH₂), 55.3 (CH₃), 97.9 (CH), 103.5 (CH), 114.2 (CH), 125.9 (C), 127.1 (CH), 141.2 (C), 143.7 (C), 149.7 (C), 157.1 (C), 159.6 (C) ppm. HRMS (ESI+): calcd for C₁₈H₂₂N₃O₂⁺, 312.1707 [M + H]⁺; found, 312.1710.**

8-Butyl-7-methyl-2-(4-nitrophenyl)imidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6j) was obtained in 73% yield (119 mg) from 7-methyl-2-(4-nitrophenyl)imidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4e, 135 mg, 0.50 mmol) and 1-bromobutane (5b, 80 μL, 0.74 mmol). Mp 199–200 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.03 (t,** *J* **= 7.4 Hz, 3H), 1.46-1.52 (m, 2H), 1.81–1.89 (m, 2H), 2.46 (s, 3H), 4.31 (t,** *J* **= 7.8 Hz, 2H), 5.71 (s, 1H), 7.99 (s, 1H), 8.01 (d,** *J* **= 9.0 Hz, 2H), 8.25 (d,** *J* **= 9.0 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 13.7 (CH₃), 19.3 (CH₃), 20.0 (CH₂), 30.7 (CH₂), 46.8 (CH₂), 98.0 (CH), 106.9 (CH), 124.1 (CH), 126.10 (CH), 139.1 (C), 139.6 (C), 144.2 (C), 147.0 (C), 150.8 (C), 156.8 (C) ppm. HRMS (ESI+): calcd for C₁₇H₁₉N₄O₃⁺, 327.1452 [M + H]⁺; found, 327.1450.**

8-Benzyl-7-methyl-2-phenylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6k) was obtained in 90% yield (142 mg) from 7-methyl-2-phenylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4a, 115 mg, 0.51 mmol) and benzyl bromide (5c, 90 μL, 0.76 mmol). Mp 175–176 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 2.31 (s, 3H), 5.60 (s, 2H), 5.70 (s, 1H), 7.24-7.36 (m, 6H), 7.39 (t,** *J* **= 8.0 Hz, 2H), 7.88 (d,** *J* **= 8.0 Hz, 2H), 7.91 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 19.4 (CH₃), 49.8 (CH₂), 98.1 (CH), 104.9 (CH), 125.7 (CH), 126.7 (CH), 127.9 (CH), 128.1 (CH), 128.6 (CH), 129.0 (CH), 133.1 (C), 135.5 (C), 141.4 (C), 144.6 (C), 150.6 (C), 157.1 (C) ppm. HRMS (ESI+): calcd for C₂₀H₁₈N₃O⁺, 316.1444 [M + H]⁺; found, 316.1450.**

8-Benzyl-2-(4-chlorophenyl)-7-methylimidazo[1,2-a]pyrimidin-5(8H)-one (6l) was obtained in 94% yield (164 mg) from 2-(4-chlorophenyl)-7-methylimidazo[1,2-a]pyrimidin-5(8H)-one (**4b**, 130 mg, 0.50 mmol)

and benzyl bromide (**5c**, 90 µL, 0.76 mmol). Mp 227–228 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3H), 5.60 (s, 2H), 5.72 (s, 1H), 7.23-7.36 (m, 7H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.89 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 19.4 (CH₃), 49.9 (CH₂), 98.3 (CH), 105.1 (CH), 126.6 (CH), 126.9 (CH), 128.2 (CH), 128.8 (CH), 129.1 (CH), 131.7 (C), 133.6 (C), 135.5 (C), 140.5 (C), 144.7 (C), 150.7 (C), 157.0 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₇³⁵ClN₃O⁺, 350.1055 [M + H]⁺; found, 350.1058.⁷

8-Benzyl-2-(4-bromophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6m) was obtained in 96% yield (189 mg) from 2-(4-bromophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (4c, 152 mg, 0.50 mmol) and benzyl bromide (5c, 90 μL, 0.76 mmol). Mp 232–233 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3H), 5.60 (s, 2H), 5.72 (s, 1H), 7.24 (d, *J* = 7.4 Hz, 2H), 7.29-7.37 (m, 3H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H), 7.90 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 19.4 (CH₃), 49.9 (CH₂), 98.3 (CH), 105.2 (CH), 121.8 (C), 126.6 (CH), 127.2 (CH), 128.2 (CH), 129.1 (CH), 131.8 (CH), 132.2 (C), 135.4 (C), 140.5 (C), 144.7 (C), 150.8 (C), 157.0 (C) ppm. HRMS (ESI+): calcd for C₂₀H₁₇⁷⁹BrN₃O⁺, 394.0550 [M + H]⁺; found, 394.0554.

8-Benzyl-2-(4-methoxyphenyl)-7-methylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6n) was obtained in 91% yield (157 mg) from 2-(4-methoxyphenyl)-7-methylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4d, 128 mg, 0.50 mmol) and benzyl bromide (5c, 90 μL, 0.76 mmol). Mp 207–208 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 2.33 (s, 3H), 3.84 (s, 3H), 5.62 (s, 2H), 5.71 (s, 1H), 6.94 (d,** *J* **= 8.8 Hz, 2H), 7.25-7.36 (m, 5H), 7.80-7.83 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 19.4 (CH₃), 49.9 (CH₂), 55.3 (CH₃), 98.2 (CH), 103.8 (CH), 114.1 (CH), 126.0 (C), 126.7 (CH), 127.0 (CH), 128.1 (CH), 129.1 (CH), 135.7 (C), 141.5 (C), 144.6 (C), 150.3 (C), 157.1 (C), 159.6 (C) ppm. HRMS (ESI+): calcd for C₂₁H₂₀N₃O₂⁺, 346.1550 [M + H]⁺; found, 346.1552.**

8-Benzyl-7-methyl-2-(4-nitrophenyl)imidazo[1,2-*a***]pyrimidin-5(8***H***)-one (6o) was obtained in 84% yield (151 mg) from 7-methyl-2-(4-nitrophenyl)imidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4d, 135 mg, 0.50 mmol) and benzyl bromide (5c, 90 μL, 0.76 mmol). Mp 230–231 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 2.37 (s, 3H), 5.63 (s, 2H), 5.76 (s, 1H), 7.24-7.39 (m, 5H), 8.01 (d,** *J* **= 9.0 Hz, 2H), 8.05 (s, 1H), 8.25 (d,** *J* **= 9.0 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 19.5 (CH₃), 50.0 (CH₂), 98.5 (CH), 107.3 (CH), 124.1 (CH), 126.1 (CH), 126.6 (CH), 128.3 (CH), 129.2 (CH), 135.2 (C), 139.3 (C), 139.6 (C), 145.1 (C), 147.1 (C), 151.4 (C), 156.8 (C) ppm. HRMS (ESI+): calcd for C₂₀H₁₇N₄O₃⁺, 361.1295 [M + H]⁺; found, 361.1299.**

Ethyl 2-(2-(4-chlorophenyl)-7-methyl-5-oxoimidazo[1,2-*a***]pyrimidin-8(5***H***)-yl)acetate (6p) was obtained in 79% yield (139 mg) from 2-(4-chlorophenyl)-7-methylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (4b, 115 mg, 0.51 mmol) and ethyl bromoacetate (5d, 90 μL, 0.81 mmol). Mp 190–191 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.32 (t,** *J* **= 7.2 Hz, 3H) 2.36 (s, 3H), 4.29 (q,** *J* **= 7.2 Hz, 2H), 5.08 (s, 2H), 5.76 (s, 1H), 7.36 (d,** *J* **= 8.5 Hz, 2H), 7.77 (d,** *J* **= 8.4 Hz, 2H), 7.84 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 14.1 (CH₃), 19.1 (CH₃), 47.1 (CH₂), 62.4 (CH₂), 98.6 (CH), 105.2 (CH), 126.9 (CH), 128.8 (CH), 131.5 (C), 133.5 (C), 140.2 (C), 143.9 (C), 150.0 (C), 156.9 (C), 167.2 (C) ppm. HRMS (ESI+): calcd for C₁₇H₁₇³⁵ClN₃O₃⁺, 346.0953 [M + H]⁺; found, 346.0952.⁷**

2.2.4. Synthesis of 2-aryl-3,6-dibromo-7-methyl-8-propylimidazo[1,2-a]pyrimidin-5(8H)-ones 8a-e.

To a solution of 2-aryl-7-methyl-8-propylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one **6a-e** (0.50 mmol) in absolute ethanol (2 mL), bromine (1 mmol, 52 μ L) was added drop by dropwise over 5 min. The reaction mixture was then stirred at room temperature for 1 h. Subsequently, distilled water (5.0 mL) was added, and the resulting mixture was extracted with dichloromethane (3 × 10 mL). The organic phase was dried over anhydrous MgSO₄, filtered, and the solution was concentrated under vacuum. The crude residue was purified by column flash chromatography on silica gel (eluent: DCM or DCM/*n*-hexane as eluents), resulting in the pure product **8a-e** as withe/yellow solids in high yields.

3,6-Dibromo-7-methyl-2-phenyl-8-propylimidazo[**1,2-***a*]**pyrimidin-5**(**8***H*)-one (**8a**) was obtained in 89% yield (189 mg) from 7-methyl-2-phenyl-8-propylimidazo[**1**,2-*a*]**pyrimidin-5**(8*H*)-one (**6a**, 133 mg, 0.5 mmol). Mp 185–186 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.05 (t, *J* = 7.4 Hz, 3H), 1.83–1.91 (m, 2H), 2.68 (s, 3H), 4.35 (t, *J* = 7.4 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 8.03 (d, *J* = 8.1 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 11.1 (CH₃), 19.8 (CH₃), 22.0 (CH₂), 49.7 (CH₂), 89.7 (C), 95.6 (C), 128.0 (CH), 128.3 (CH x 2), 132.1 (C), 139.9 (C), 143.0 (C), 148.2 (C), 154.3 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₆⁷⁹Br₂N₃O⁺, 423.9655 [M + H]⁺; found, 423.9660.

3,6-Dibromo-2-(4-chlorophenyl)-7-methyl-8-propylimidazo[1,2-*a*]**pyrimidin-5(8***H*)-one (**8b**) was obtained in 93% yield (214 mg) from 2-(4-chlorophenyl)-7-methyl-8-propylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (**6b**, 150 mg, 0.5 mmol). Mp 229–230 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.05 (t, *J* = 7.4 Hz, 3H), 1.84–1.91 (m, 2H), 2.68 (s, 3H), 4.34 (t, *J* = 7.8 Hz, 2H), 7.40 (t, *J* = 8.7 Hz, 2H), 7.99 (t, *J* = 8.7 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 11.1 (CH₃), 19.8 (CH₃), 22.0 (CH₂), 49.7 (CH₂), 89.8 (C), 95.7 (C), 128.5 (CH), 129.2 (CH), 130.6 (C), 134.2 (C), 138.8 (C), 143.0 (C), 148.4 (C), 154.3 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₅⁷⁹Br₂³⁵ClN₃O⁺, 457.9265 [M + H]⁺; found, 457.9283.

3,6-Dibromo-2-(4-bromophenyl)-7-methyl-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (8c) was obtained in 95% yield (239 mg) from 2-(4-bromophenyl)-7-methyl-8-propylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (6c, 173 mg, 0.5 mmol). Mp 223–224 °C (amorphous). ¹H NMR (CDCl₃, CDCl₃,): \delta = 1.05 (t,** *J* **= 7.5 Hz, 3H), 1.82– 1.92 (m, 2H), 2.69 (s, 3H), 4.34 (t,** *J* **= 7.9 Hz, 2H), 7.56 (d,** *J* **= 8.7 Hz, 2H), 7.93 (d,** *J* **= 8.7 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 11.1 (CH₃), 19.8 (CH₃), 22.0 (CH₂), 49.7 (CH₂), 89.9 (C), 95.8 (C), 122.5 (C), 129.4 (CH), 131.0 (C), 131.5 (CH), 138.9 (C), 143.0 (C), 148.4 (C), 154.3 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₅⁷⁹Br₃N₃O⁺, 501.8760 [M + H]⁺; found, 501.8757.** **3,6-Dibromo-2-(4-methoxyphenyl)-7-methyl-8-propylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (8d) was obtained in 90% yield (205 mg) from 2-(4-methoxyphenyl)-7-methyl-8-propylimidazo[1,2-***a***]pyrimidin-5(8***H***)-one (6d, 148 mg, 0.5 mmol). Mp 200–201 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): \delta = 1.04 (t,** *J* **= 7.4 Hz, 3H), 1.81–1.91 (m, 2H), 2.66 (s, 3H), 3.85 (s, 3H), 4.33 (t,** *J* **= 7.8 Hz, 2H), 6.97 (d,** *J* **= 8.8 Hz, 2H), 7.98 (d,** *J* **= 8.8 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 11.1 (CH₃), 19.7 (CH₃), 21.9 (CH₂), 49.7 (CH₂), 55.3 (CH₃), 88.6 (C), 95.6 (C), 113.7 (CH), 124.6 (C), 129.2 (CH), 139.7 (C), 142.8 (C), 148.0 (C), 154.3 (C), 159.7 (C) ppm. HRMS (ESI+): calcd for C₁₇H₁₈⁷⁹Br₂N₃O₂⁺, 453.9760 [M + H]⁺; found, 453.9764.**

3,6-Dibromo-7-methyl-2-(4-nitrophenyl)-8-propylimidazo[1,2-*a***]pyrimidin-5(8***H***)-one (8e)** was obtained in 82% yield (193 mg) from 7-methyl-2-(4-nitrophenyl)-8-propylimidazo[1,2-*a*]**pyrimidin-5(8***H***)-one (6e**, 235 mg, 0.5 mmol). Mp 227–228 °C (amorphous). ¹H NMR (400 MHz, CDCl₃): δ = 1.08 (t, *J* = 7.5 Hz, 3H), 1.84– 1.92 (m, 2H), 2.71 (s, 3H), 4.37 (t, *J* = 7.9 Hz, 2H), 8.27 (s, 4H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 11.1 (CH₃), 19.9 (CH₃), 22.0 (CH₂), 49.9 (CH₂), 91.9 (C), 95.9 (C), 123.5 (CH), 128.4 (CH), 137.6 (C), 138.5 (C), 143.4 (C), 147.2 (C), 149.0 (C), 154.2 (C) ppm. HRMS (ESI+): calcd for C₁₆H₁₅⁷⁹Br₂N₄O₃⁺, 468.9505 [M + H]⁺; found, 468.9510.

3. Copies of NMR spectra

Fig. S5 ¹H and ¹³C{¹H} NMR spectra of 2-(4-chlorophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (4b)

Fig. S7 ¹H and ¹³C{¹H} NMR spectra of 2-(4-methoxyphenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (4d)

S17

Fig. S9 ¹H and ¹³C{¹H} NMR spectra of 7-methyl-2-phenyl-8-propylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6a)

S21

Fig. S13 ¹H and ¹³C{¹H} NMR spectra of 2-(4-methoxyphenyl)-7-methyl-8-propylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6d)

Fig. S15 ¹H and ¹³C{¹H} NMR spectra of 8-butyl-7-methyl-2-phenylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6f)

Fig. S16 ¹H and ¹³C{¹H} NMR spectra of 8-butyl-2-(4-chlorophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6g)

Fig. S17 ¹H and ¹³C{¹H} NMR spectra of 8-butyl-(4-bromophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6h)

Fig S18 ¹H and ¹³C{¹H} NMR spectra of 8-butyl-(4-methoxyphenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6i)

Fig. S21 ¹H and ¹³C{¹H} NMR spectra of 8-benzyl-2-(4-chlorophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (4I)

Fig. S22 ¹H and ¹³C{¹H} NMR spectra of 8-benzyl-2-(4-bromophenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (6m)

Fig. S23 ¹H and ¹³C{¹H} NMR spectra of 8-benzyl-2-(4-methoxyphenyl)-7-methylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (4n)

Fig. S26 ¹H and ¹³C{¹H} NMR spectra of 3,6-dibromo-7-methyl-2-phenyl-8-propylimidazo[1,2-*a*]pyrimidin-5(8*H*)-one (8a)

S37

4. Photophysical and crystallographic details

UV-vis absorption and fluorescence studies of compound **6** were carried out at 20 °C using solutions 6.6 μ M in cyclohexene (CH), *tert*-butyl methyl ether (TBME), dichloromethane (DCM), ethyl acetate (AcOEt), *N*,*N*-dimethylformamide (DMF), and acetonitrile (ACN). The relative quantum yields (ϕ_F) were obtained using Prodan ($\phi_f = 0.94$ in ACN) as a reference and calculated according to Equation 1

$$\phi_{f,x} = \phi_{f,st} \frac{F_x}{F_{st}} \frac{A_{st}}{A_x} \frac{n_x^2}{n_{st}^2}$$
 Equation 1

where x and st indicate the sample and standard solution, respectively, F is the integral photon flux, A is the absorption factor, and n is the refractive index of the solvent.⁸

Fig. S32 ORTEP drawing for structure 8d. Displacement ellipsoids are drawn at the 50% probability level.

5. References

- 1 G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71, 3–8.
- 2 N. R. Elejalde, M. Macías, J. C. Castillo, M. Sortino, L. Svetaz, S. Zacchino and J. Portilla, *ChemistrySelect*, 2018, **3**, 5220–5227.
- 3 M. Jyothi, H. A. Khamees, S. M. Patil, R. Ramu and S. A. Khanum, *Journal of the Iranian Chemical Society*, 2022, **19**, 3919–3933.
- 4 A. M. Kamal El-sagheir, I. Abdelmesseh Nekhala, M. K. Abd El-Gaber, A. S. Aboraia, J. Persson, A.-B. Schäfer, M. Wenzel and F. A. Omar, *RSC Med Chem*, 2023, **14**, 2593–2610.
- 5 S. Laneri, A. Sacchi and E. Abignente, J Heterocycl Chem, 2000, 37, 1265–1267.
- 6 H. T. Abdel-Mohsen, A. Abood, K. J. Flanagan, A. Meindl, M. O. Senge and H. I. El Diwani, Arch Pharm (Weinheim), 2020, **353**, e1900271.
- 7 M. Kawaguchi, T. Okabe, S. Okudaira, K. Hama, K. Kano, H. Nishimasu, H. Nakagawa, R. Ishitani, H. Kojima, O. Nureki, J. Aoki and T. Nagano, *J Med Chem*, 2020, **63**, 3188–3204.
- 8 C. Würth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, Nat. Protoc., 2013, 8, 1535–1550.