Supporting information

Synthesis, DFT Studies on a Series of Tunable Quinolines Derivatives

Nagesh Dhanaji Chavan, ${ }^{+}$Vijayaparthasarathi Vijayakumar*, ${ }^{*}$.

${ }^{\dagger}$ Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore- 632014, India

Table of Contents

1. General Methods.. 1
2. Synthesis of Functionalized Quinoline.. 2
3. Acid Amine Cross-Coupling Reaction and compound identification data....... 4
4. DFT (FMO, MEP, TD-DFT) Calculations and Diagrams............................ 34
5. Absorption and Fluorescent Spectra.. 88
6. IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT-135 and 2D NMR and HRMS Spectra......................... 102

1. General methods

The reactions were conducted in round bottom flasks, and all solvents and chemical materials were obtained from commercial sources. The preparation of 1-(6-amino-2-methyl-4-phenylquinolin-3-yl)-ethan-1-one followed reported protocols. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker Avance 400 spectrometer and referenced to the residual solvent signal $\mathrm{CDCl}_{3}:(7.26)$ for ${ }^{1} \mathrm{H}$ and (77.16) for ${ }^{13} \mathrm{C}$ NMR; dimethyl sulfoxide- $d_{6}(2.50)$ for ${ }^{1} \mathrm{H}$ and (39.50) for ${ }^{13} \mathrm{C}$. Chemical shifts (δ) are given in ppm, and coupling constants (J) were measured in Hz. The following abbreviations were used: s-singlet, d-doublet, dd-doublet of the doublet, t-triplet, m (multiple), and br-broad. HR ESIMS values were obtained using Xeo G2-XS QTof (Waters) and given in m / z. Absorption was recorded using a JASCO V-670 spectrometer. Steady-state fluorescence spectra were recorded on
the Hitachi F-7000 FL spectroflurophotometer by excitation at the respective absorption maxima. Column chromatography was performed using silica gel (100-200 mesh) packed in glass columns. Analytical TLC was conducted on Macherey-Nagel 60 F245 aluminium-backed silica gel plates.

2. Synthesis of Functionalized Quinoline and Nitro to Amine reduction:

Figure-S1

2.1; The Preparation of 1-(2-Methyl-6-nitro-4-phenylquinolin-3-yl)ethan-1-one.

(2-Amino-5-nitrophenyl) (phenyl)methanone $(2 \times 7.5 \mathrm{~g}, 0.0309 \mathrm{moles})$, pentane-2,4-dione (17.41mL, 0.1549 moles $)$, Conc. $\mathrm{HCl}(1.6 \mathrm{~mL})$ in 200 mL of AR grade EtOH 500 mL round bottomflask was stirred at $80^{\circ} \mathrm{C}$ temperature under the nitrogen gas for 6 hours. Reaction monitored by TLC. After completion of the reaction, the reaction mixture was added to the cold water and formed a precipitate. Precipitate filtered and washed with n-pentane. The crude compound was purified by column chromatography using silica gel (100-200 mesh and Eluent: 25 EtOH in Hexane) a to obtain the Title Product. The product was confirmed by 1H NMR, Yield (76.47\%).
${ }^{1} \mathbf{H}$ NMR:(400 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta \operatorname{ppm} 8.59(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, \mathrm{J}=2.40,9.20 \mathrm{~Hz}, 1 \mathrm{H})$, $8.56(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$.

2.2; The Preparation of Ethyl 2-methyl-6-nitro-4-phenylquinoline-3-carboxylate.

(2-Amino-5-nitrophenyl) (phenyl)methanone $(2 \times 10 \mathrm{~g}, 0.0413$ moles), ethyl 3-oxobutanoate (53.7 mL , 04132 moles), Conc. HCl 2.2 mL) in 150 of AR grade EtOH 10 mL round bottom flask was stirred at room temperature under the nitrogen gas for 6 hours. Reaction monitored by TLC. After completion of the reaction, the reaction mixture was added to the cold water and formed a precipitate. Precipitate filtered and washed with n-pentane. The crude compound was purified by column chromatography using silica gel (100-200 mesh and Eluent: 20 EtOH in Hexane) to obtain the Title Product. The product was confirmed by ${ }^{1} \mathrm{H}$ NMR, Yield ($24.12 \mathrm{~g}, 86.88 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) ; \delta \mathrm{ppm} 8.46(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, \mathrm{J}=2.40,9.20 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=6.80 \mathrm{~Hz}, 3 \mathrm{H})$.

2.3; The Preparation 1-(6-Amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one.

1-(2-Methyl-6-nitro-4-phenylquinolin-3-yl)ethan-1-one (14 g, 0.0457 moles), Zinc dust (17.29 g, 0.2742 moles), Ammonium chloride ($14.53 \mathrm{~g}, 0.2742$ moles) in 75 mL dioxane and 75 mL of water in round bottom flask was stirred at room temperature under the nitrogen gas for 30 min. Reaction monitored by TLC, After completion of the reaction, the reaction mixture was added to the water $(100 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$. The organic layer was washed with brine water (100 mL) and distilled under high vacuum to obtain the Title Product. The product was confirmed by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathbf{1}} \mathbf{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right), \delta \mathrm{ppm} 7.70$ $(\mathrm{d}, \mathrm{J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=2.40,8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}$ $=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H})$.

2.4; The Preparation Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate

Ethyl 2-methyl-6-nitro-4-phenylquinoline-3-carboxylate ($20 \mathrm{~g}, 0.0595$ moles), Zinc dust (22.5 g , 0.3571 moles), Ammonium chloride ($18.92 \mathrm{~g}, 0.3571$ mole in 100 mL dioxane AR grade and 100 mL of water in round bottom flask was stirred at room temperature under the nitrogen gas for 30 min . Reaction monitored by TLC, After completion of the reaction, the reaction mixture was added to the water $(100 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$.The organic layer was washed with brine water $(100 \mathrm{~mL})$ and distilled under high vacuum to obtain the Title Product. The product was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, ${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) ; \delta 7.71(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{dd}, \mathrm{J}=2.40,8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H})$.

3: Acid Amine Cross-Coupling Reaction

Scheme-1

 4	5R	
5R $=5 \mathrm{a}$ to 5 z		
$5 \mathrm{a}=$ acetic acid	$5 \mathrm{j}=2$-(3-bromophenyl)acetic acid	5s = 2-hydroxybenzoic acid
$5 \mathrm{~b}=2$-cyanoacetic acid	$5 \mathrm{k}=2$-(4-bromophenyl)acetic acid	$5 \mathrm{t}=2$-amino-4-iodobenzoic acid
$5 \mathrm{c}=2,2,2$-trifluoroacetic acid	$51=2$-phenoxyacetic acid	$5 \mathrm{u}=3,5$-dimethoxybenzoic acid
$5 \mathrm{~d}=2$-phenylacetic acid	$5 \mathrm{~m}=2$-(benzyloxy)acetic acid	$5 \mathrm{v}=2$-amino-5-chloro-3-methylbenzoic acid
$5 \mathrm{e}=2$-(p-tolyl)acetic acid	$5 \mathrm{n}=$ cinnamic acid	$5 \mathrm{w}=5$-chloro-2-nitrobenzoic acid
$5 \mathrm{f}=2$-(2-methoxyphenyl)acetic acid	$50=(E)$-3-(4-methoxyphenyl)acrylic acid	$5 \mathrm{x}=3$-chloro-2-nitrobenzoic acid
$5 \mathrm{~g}=2$-(4-methoxyphenyl)acetic acid	$5 \mathrm{p}=2,6$-dichloroisonicotinic acid	$5 y=2$-(phenylamino)benzoic acid
$5 \mathrm{~h}=2$-(2-chlorophenyl)acetic acid	$5 \mathrm{q}=3,6$-dichloropicolinic acid	$5 z=1$-butyl-1H-indazole-3-carboxylic acid
$5 i=2-(4-c h l o r o p h e n y l) a c e t i c ~ a c i d ~$	$5 \mathrm{r}=5$-bromonicotinic acid	$5 z=1$-buty--1H-indazole-3-carboxylic acid

Figure-S2

Synthesized Derivatives (6a-6z):

Figure-S3

Scheme-2

Figure-S4

Figure-S5

3.1 Experimental procedure:

General procedure for the synthesis of 6a-6z: 1-(6-amino-2-methyl-4-phenylquinolin-3-yl) ethan-1-one (300-500 mgs), substituted carboxylic acids (1.5 to 5.0 equiv), HATU (2.0 to 2.5 equivalents) and DIPEA (2.5 equivalents) in 10 mL of AR grade DMF 50 mL round bottomflask was stirred at room temperature under the nitrogen gas for 6-12 hours. After completion of the reaction, the reaction mixture was added to the cold water and extracted with ethyl acetate $(2 \times 25 \mathrm{~mL})$. The organic layer was washed with brine water $(25 \mathrm{~mL})$. The Organic layer concentrates under a high vacuum to get crude compound. The crude compound was purified by using column chromatography to obtain pure products $\mathbf{6 a - 6 z}$ and 6aa-6aw.

3.2 Plausible Mechanism:

Figure.S6

3.3 Procedure and Identification Analytical data of the compounds

N -(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (300 mg, 1.0869 mmole), acetic acid (130 $\mathrm{mg}, 2.1739 \mathrm{mmole})$, HATU ($1.02 \mathrm{~g}, 2.7173$), DIPEA ($304 \mathrm{mg}, 4.0869 \mathrm{mmole}$) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 80% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.8$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 58\%, m.p. $190-192^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=2.00,8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.20 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 2 \mathrm{H}), 2.555(\mathrm{~s}, 3 \mathrm{H}), 2.010(\mathrm{~s}, 3 \mathrm{H})$, $2.004(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz DMSO-d ${ }_{6}$): $\delta \mathrm{ppm}$ 205.77, 169.10, 151.68, 144.14, 143.01, $138.12,135.37,135.33,130.15,129.18,125.43,124.17,113.32,32.24,24.38,23.63$; IR Stretching: N-H (3585 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}\left(1702 \mathrm{~cm}^{-1}\right)$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ 319.1446; Found 319.1473.

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (400 mg, 1.4492 mmole), 2cyanoacetic acid ($246 \mathrm{mg}, 2.8985 \mathrm{mmole}$), HATU ($1.3 \mathrm{~g}, 3.6231 \mathrm{mmole}$), DIPEA (467 mg , 3.6231 mmole) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain] Pale yellow solid, yield 60%, m.p. $160-162^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): δ ppm $10.56(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=$ $2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (100 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm}$ 205.67, 162.79, 161.82, 152.27, 144.40, 143.11, 137.17, 135.44, 135.21, 130.14, 129.23, 125.38, 123.92, 116.20, 113.94, 32.24, 27.25, 23.66; IR Stretching; N-H (3299 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{O}\left(1686 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ 344.1390; Found 344.1410.

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one ($400 \mathrm{mg}, 1.4492 \mathrm{mmole}$), 2,2,2trifluoroacetic acid ($330 \mathrm{mg}, 2.8985 \mathrm{mmole}$), HATU ($1.3 \mathrm{~g}, 3.6231 \mathrm{mmole}$), DIPEA (467 mg , 3.6231 mmole) in DMF (10 mL) at RT 8 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain] Pale yellow solid Pale yellow solid, yield 60%, m.p. $134-136^{0}$ C; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta \mathrm{ppm} 11.51(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{dd}, \mathrm{J}=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.37(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$;
${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 205.51,158.79,157.82,153.28,145.04,143.48$, $135.60,135.26,134.98,130.21,129.25,124.69,123.92,116.20,113.94,55.35,32.21,23.80$; IR Stretching; N-H (3299 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{O}\left(1686 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} 373.1163$; Found 373.1190

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (500 mg, 1.8115 mmole), 2phenylacetic acid ($369 \mathrm{mg}, 2.7173 \mathrm{mmole}$), HATU ($1.7 \mathrm{~g}, 4.5289 \mathrm{mmole}$), DIPEA (584 mg , 4.5289 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale yellow solid; yield 80%, m.p. $140-142^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}): δ ppm $10.45(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.55(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 7 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 205.66,169.89,151.79,144.06,143.16,138.10,136.16,135.33$, 130.14, 129.65, 129.21, 128.75, 127.02, 125.47, 124.20, 113.41, 43.70, 32.23, 23.59; IR Stretching; N-H (3582 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}\left(1698 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1559 \mathrm{~cm}^{-1}\right)\right)$; HRMS (ESI) m/z: $[\mathrm{M}+$ $\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 395.1759; Found 395.1798.

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl)acetamide (6e).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (200 mg, 0.7246 mmole), 2-(ptolyl)acetic acid ($217 \mathrm{mg}, 1.4492 \mathrm{mmole}$), HATU ($550 \mathrm{~g}, 1.4492 \mathrm{mmole}$), DIPEA (233 mg , 1.8115 mmole) in DMF (12 mL) at RT 12 h . The title compound was isolated (Eluent 50%
ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 82%, m.p: $112-114^{0} \mathrm{C} \mathbf{;}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm}$ $10.43(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, \mathrm{J}=1.60,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.55(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}$, 2H), $2.56(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 205.69$, 170.04, 151.74, 144.23, 143.23, 138.11, 136.04, 135.39, 133.11, 130.15, 129.55, 129.49, 129.34, 129.30, 129.19, 125.44, 124.15, 113.40, 43.33, 32.22, 23.65, 21.08, IR Stretching; N-H (3489 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{O}\left(1705 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1540 \mathrm{~cm}^{-1}\right)\right.$), HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ 409.1910; Found 409.1909

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl)acetamide (6f).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (200 mg, 0.7246 mmole), 2-(2methoxyphenyl)acetic acid ($180 \mathrm{mg}, 1.0869 \mathrm{mmole}$), HATU ($550 \mathrm{~g}, 1.4492 \mathrm{mmole}$), DIPEA ($233 \mathrm{mg}, 1.8115 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 88%, m.p. $158-160^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): δ ppm 10.33 (s, 1H), 8.01-7.99 (m, 3H), 7.56-7.54 (m, 3H), 7.33 (d, J = $7.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (t, J $=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.60 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz DMSO- $\left.\mathrm{d}_{6}\right): \delta \mathrm{ppm}$ $205.76,169.88,157.68,151.64,144.16,143.00,138.22,135.41,135.36,131.46,130.15$, 129.54, 132.34, 129.18, 128.54, 125.47, 124.36, 124.16, 120.59, 113.21, 111.12, 55.84, 38.11, 32.26, 23.67; IR Stretching; N-H (3344 cm $\left.{ }^{-1}\right)$, $\mathrm{C}=\mathrm{O}\left(1691 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1540 \mathrm{~cm}^{-1}\right)\right.$; HRMS (ESI) m/z: [M + H] + Calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} 425.1859$; Found 425.1859

N -(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-methoxyphenyl)acetamide (6g).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one ($400 \mathrm{mg}, 1.4492 \mathrm{mmole}$), 2-(4methoxyphenyl)acetic acid ($366 \mathrm{mg}, 2.1739 \mathrm{mmole}$), HATU ($1.1 \mathrm{~g}, 2.8985 \mathrm{mmole}$), DIPEA ($560 \mathrm{mg}, 4.3478 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50\% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4(\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield : 70\%, m.p. $160-162^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 10.41(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.95(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=$ $8.80 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (100 MHz, DMSO-d $_{6}$): $\delta \mathrm{ppm} 206.16,170.53,158.48,151.94,144.00,143.31$, 137.92, 135.40, 130.65, 130.00, 129.46, 129.31, 129.23, 127.92, 125.44, 124.28, 114.19, 113.49, 55.45, 42.73, 32.21, 23.42 ; IR Stretching; N-H (349 cm- $), \mathrm{C}=\mathrm{O}\left(1686 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\right.$ ($1535 \mathrm{~cm}^{-1}$); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ 425.1865; Found 425.1885

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl)acetamide (6h).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (200 mg, 0.7246 mmole), 2-(2chlorophenyl)acetic acid ($246 \mathrm{mg}, 1.4492 \mathrm{mmole}$), HATU ($550 \mathrm{mg}, 1.4492 \mathrm{mmole}$), DIPEA (233 mg , 1.8115 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield : 75\%, m.p. $208-210^{0} \mathrm{C} ;{ }^{\boldsymbol{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} \delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 8.01$ $(\mathrm{dd}, \mathrm{J}=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.42(\mathrm{~m}$,
$2 \mathrm{H}), 7.34-7.34(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}\right): \delta$ ppm 206.1, $168.68,151.76,144.24,143.04,138.04,135.42,135.39,134.17,134.13,132.75,130.14$, $129.61,129.44,129.36,129.19,129.08,127.51,125.48,124.11,113.34,41.19,32.24,23.66$; IR Stretching; N-H (3275 $\left.\mathrm{cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1704 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1537 \mathrm{~cm}^{-1}\right) ;\right.$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2}$ 429.1364; Found 429.1362

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-chlorophenyl)acetamide (6i).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (200 mg, 0.7246 mmole), 2-(4chlorophenyl)acetic acid ($246 \mathrm{mg}, 1.4492 \mathrm{mmole}$), HATU ($550 \mathrm{mg}, 1.4492 \mathrm{mmole}$), DIPEA (233 mg , 1.8115 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield : 80%, m.p. $92-94{ }^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d $_{6}$): $\delta \mathrm{ppm} 10.46(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=$ $9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.64(\mathrm{~s}$, 2H), $2.56(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta \mathrm{ppm}$ 205.72, 169.50, 151.82, $144.24,143.02,137.97,135.40,135.35,135.14,131.60,130.15,129.21,128.67,125.43,124.09$, 113.42, 42.80, 32.24, 23.67; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3579 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1706 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1494 \mathrm{~cm}^{-1}\right)\right.$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2}$ 429.1364; Found 429.1363 N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl)acetamide (6j).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $\quad(200 \mathrm{mg}, 0.7246$ mmole), 2-(3bromophenyl)acetic acid ($334 \mathrm{mg}, 1.4492 \mathrm{mmole}$), HATU ($550 \mathrm{mg}, 1.4492 \mathrm{mmole}$), DIPEA (233 mg , 1.8115 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White
solid, yield : 78\%, m.p. $142-144^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 10.45(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}$ $=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $\mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6} : $\delta \mathrm{ppm}$ 205.71, 169.31, 151.86, 144.26, 143.04, 138.82, 137.92, 135.41, 135.34, $132.48,130.88,130.15,129.93,129.63,129.39,129.22,128.89,125.43,124.10,121.91,113.46$, 42.98, 32.24, 23.68; IR Stretching; N-H (3332 cm^{-1}), $\mathrm{C}=\mathrm{O}\left(1695 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1534 \mathrm{~cm}^{-1}\right)\right.$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2} 473.0859$; Found 473.0858

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl)acetamide(6k).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $\quad(200 \quad \mathrm{mg}, \quad 0.7246 \mathrm{mmole}), \quad 2-(4-$ bromophenyl)acetic acid ($334 \mathrm{mg}, 1.4492 \mathrm{mmole}$), HATU ($550 \mathrm{mg}, 1.4492 \mathrm{mmole}$), DIPEA (233 mg , 1.8115 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ ($\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain].White solid, yield : 70\%, m.p.: $108-110^{0}$ C; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 400 \mathrm{MHz}, \mathrm{CDCl} 3: \delta 10.50$ (s, $1 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=1.60,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.50-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $_{6}$): $\delta \mathrm{ppm}$ 205.72, 169.44, 151.82, 144.24, 143.03, 137.98, 135.57, 135.39, 135.35, 132.0, 131.59, 130.14, 129.60, 129.37, 129.21, 125.43, 124.10, 120.26, 113.42, 42.86, 32.24, 23.67; IR Stretching: N-H (3396 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{O}\left(1691 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1485 \mathrm{~cm}^{-1}\right)\right.$; HRMS (ESI) m/z: [M + H] + Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2} 473.0859$; Found 473.0856 \mathbf{N}-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (6l).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one ($400 \mathrm{mg}, 1.4492 \mathrm{mmole}$), 2-phenoxyacetic
acid (286 mg, 1.8840 mmole$)$, HATU ($1.3 \mathrm{~g}, 3.6231 \mathrm{mmole}$), DIPEA ($476 \mathrm{mg}, 3.6231 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield 72%, m.p.: 196-198 ${ }^{0}$ C ${ }^{\mathbf{1}}{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 10.41$ (s, 1H), $8.06(\mathrm{dd}, \mathrm{J}=2.00,9.00 \mathrm{~Hz}$, $1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=4.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 4 \mathrm{H}), 6.97-$ $6.96(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}\right): \delta \mathrm{ppm}$ $210.48,172.11,162.99,156.83,149.15,147.88,142.03,140.16,140.04,134.93,134.74,133.97$, $130.13,129.28,126.38,119.79,72.17,37.00,28.45$; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3394 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}(1690$ $\mathrm{cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1526 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ 411.1708; Found 411.1719

\mathbf{N}-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (400 mg, 1.4492 mmole$)$, 2(benzyloxy)acetic acid (360 mg, 2.1739 mmole), HATU ($1.1 \mathrm{~g}, 2.8985 \mathrm{mmole}$), DIPEA (560 mg , 4.3478 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 62%, m.p. $138-140^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta \mathrm{ppm} 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, \mathrm{J}$ $=2.40,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.37(\mathrm{~m}, 7 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO$\left.\mathrm{d}_{6 \mathrm{~m}}\right): \delta \mathrm{ppm} 210.49,173.54,156.72,149.12,147.87,142.89,142.09,140.13,140.09,134.95,134.12$, $133.95,133.50,133.01,132.88,130.09,129.45,119.02,77.61,74.57,37.00,28.45$; IR Stretching; N-H (3275 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}\left(1704 \mathrm{~cm}^{-1}\right) \mathrm{C}=\mathrm{C}\left(1537 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} 425.1865$; Found 425.1888

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (500 mg, 1.8115 mmole), cinnamic acid ($536 \mathrm{mg}, 3.6231 \mathrm{mmole}$), HATU ($1.7 \mathrm{~g}, 4.5289 \mathrm{mmole}$), DIPEA ($701 \mathrm{mg}, 5.4347 \mathrm{mmole}$) in DMF $(10 \mathrm{~mL})$ at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: R_{f} $=0.4(\mathrm{EtOAc} / H e x a n e ~ 5: 5)$ [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield 70\%, m.p. 188$190^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, \mathrm{J}=2.40,7.80 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ $(\mathrm{d}, \mathrm{J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=$ $15.60 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta \mathrm{ppm} 205.71,172.45$, $164.23,151.86,144.32,143.09,141.12,138.11,135.41,135.11,130.20,129.48,129.22 .128 .21$, 125.54, 124.20, 122.31, 121.18, 113.71, 32.27, 23.69; IR Stretching; N-H (3317 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}(1688$ $\left.\mathrm{cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1551 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} 407.1759$; Found 407.1785

(E)-N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4methoxyphenyl)acrylamide(60).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (450 mg, 1.6304 mmole), (E)-3-(4methoxyphenyl)acrylic acid ($435 \mathrm{mg}, 3.6231 \mathrm{mmole}$), HATU ($1.7 \mathrm{~g}, 4.5289 \mathrm{mmole}$), DIPEA (701 $\mathrm{mg}, 5.4347 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4(\mathrm{EtOAc} / \mathrm{Hexane} 5: 5)$ [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield 64\%, m.p. $228-230{ }^{0} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO-d): $\delta \mathrm{ppm} 10.39$ (s, 1H), 8.10 (dd, J $=2.40,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=11.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.56-$ $7.55(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=15.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $\left.\mathrm{d}_{6}\right): \delta \mathrm{ppm} 205.74,164.56,161.14,151.75$, $144.25,143.04,140.89,138.26,135.43,135.38,130.20,129.87,129.21,127.67,125.54,124.19$,
119.68, 114.94, 113.53, 55.37, 32.27, 23.69; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3369 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1678 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{C}$ ($1493 \mathrm{~cm}^{-1}$); HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} 437.1865$; Found 437.1895
\mathbf{N}-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (400 mg, 1.4492 mmole$), \quad$ 2,6dichloroisonicotinic acid ($333 \mathrm{mg}, 1.7309 \mathrm{mmole}$), HATU ($1.3 \mathrm{~g}, 3.6231 \mathrm{mmole}$), DIPEA (476 mg , $3.6231 \mathrm{mmole})$ in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 70%, m.p. $179-181^{0}$ C; ${ }^{1}$ H NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 10.85$ (bs, 1H), 8.17 (dd, $\mathrm{J}=2.40,8.80 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.60-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 2 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz DMSO-, d_{6}): $\delta \mathrm{ppm}$ 205.66, 172.49, 161.99, 152.62, $150.22,148.46,144.73,143.33,173.06,135.52,135.20,130.19,129.26,125.29,124.89,122.40$, 115.45, 32.24, 23.75; IR Stretching; N-H (3337 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{O}\left(1690 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1535 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} 450.0776$ Found 450.0777

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-3,6-dichloropicolinamide (6q).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $\quad(500 \mathrm{mg}, \quad 1.8115 \mathrm{mmole}), \quad 3,6$ dichloropicolinic acid ($519 \mathrm{mg}, 2.7173 \mathrm{mmole}$), HATU ($1.7 \mathrm{~g}, 4.5289 \mathrm{mmole}$), DIPEA (584 $\mathrm{mg}, 4.5289 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ ($\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale Yellow solid, yield 74%, m.p. $248-250^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}); $\delta \mathrm{ppm} 10.02(\mathrm{bs}, 1 \mathrm{H})$, 8.16 (dd, J = 8.80, $12.80 \mathrm{~Hz}, 2 \mathrm{H}$), $8.06(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=$ $8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.39(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz ,

DMSO-d d_{6} : $\delta \mathrm{ppm} 205.66,162.50,151.80,148.20,144.63,143.26,142.33,137.11,135.52,135.21$, 130.21, 129.24, 127.93, 127.53, 125.42, 124.23, 114.67, 32.26, 23.76; IR Stretching; N-H ($3217 \mathrm{~cm}^{-}$ ${ }^{1}$), $\mathrm{C}=\mathrm{O}\left(1680 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1503 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ 450.0776; Found 450.077

N-(7-Acetyl-6-methyl-8-phenylnaphthalen-2-yl)-5-bromonicotinamide (6r).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one ($400 \mathrm{mg}, 1.4492 \mathrm{mmole}$), 5 -bromonicotinic acid ($434 \mathrm{mg}, 2.1739 \mathrm{mmole}$), HATU ($1.3 \mathrm{~g}, 3.6231 \mathrm{mmole}$), DIPEA ($467 \mathrm{mg}, 3.6231 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 70% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.3$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 60%, m.p.: $152-154^{\circ}{ }^{\circ}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- $_{6}$) $\delta \mathrm{ppm} 10.74(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}$, $1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=5.20 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 3 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- $_{6}$): $\delta \mathrm{ppm}$ 205.69, 163.27, 162.78, 153.23, 152.34, 147.88, 144.62, 143.24, 138.23, 137.50, 135.46, 135.29, 132.36, 130.21, 129.53, 129.43, 129.23, 125.30, 124.96, 120.38, 115.11, 32.22, 23.73; IR Stretching; N-H (3436 $\left.\mathrm{cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1686 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2} 460.0660$; Found 460.0657

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one ($400 \mathrm{mg}, 1.4492 \mathrm{mmole}$), 2-hydroxybenzoic acid ($300 \mathrm{mg}, 2.1739 \mathrm{mmole}$), HATU ($1.1 \mathrm{~g}, 2.8985 \mathrm{mmole}$), DIPEA ($373 \mathrm{mg}, 2.8985 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 50%, m.p.: $168-170^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta \mathrm{ppm} 11.563$ (bs, $400 \mathrm{MHz}, \mathrm{CDCl3:} \delta 11.563(\mathrm{bs}, 1 \mathrm{H})$,
$10.605(\mathrm{bs}, 1 \mathrm{H}), 8.11(\mathrm{dd}, \mathrm{J}=2.40,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=1.20,8.00 \mathrm{~Hz}, 1 \mathrm{H})$, 7.60-7.60 (m, 3H), 7.44-7.44 (m, 3H), 6.98-6.96(m, 2H), $2.592(\mathrm{~s}, 3 \mathrm{H}), 2.026(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta \mathrm{ppm} 205.68,172.44,167.20,158.62,152.29,144.62,143.25,137.15,135.45$, $135.30,134.09,130.25,129.22,125.59,125.35,119.49,117.59,115.49,32.24,23.73$; IR Stretching; N-H (3331 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}\left(1694 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ 397.1552; Found 397.1584

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-iodobenzamide (6t).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (450 mg, 1.6304 mmole), 2-amino-4iodobenzoic acid ($514 \mathrm{mg}, 1.9565 \mathrm{mmole}$), HATU ($1.5 \mathrm{~g}, 4.0760 \mathrm{mmole}$), DIPEA ($525 \mathrm{mg}, 4.0760$ mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 62\%, m.p.: $108-110^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) ppm $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, \mathrm{J}=2.40,9.20$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}$, $3 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=2.00,51.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H})$, $2.70(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $\left.{ }_{6}\right): \delta \mathrm{ppm} 205.77,167.10,151.99,149.76$, $144.46,143.11,140.65,137.97,136.90,135.37,130.28,129.23,125.67,125.25,119.34,117.69$, 115.17, 32.25, 23.73; IR Stretching; N-H (3471 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}\left(1696 \mathrm{~cm}^{-1}\right) ;$ HRMS (ESI) m/z: $[\mathrm{M}+$ $\mathrm{H}]+$ Calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{IN}_{3} \mathrm{O}_{2} 522.0878$; Found 522.0685

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $\quad(500 \mathrm{mg}, 1.8115 \mathrm{mmole}), \quad$ 3,5dimethoxybenzoic acid (494 mg, 2.7173 mmole), HATU (1.7 g, 4.5289 mmole), DIPEA (584 mg ,
4.5289 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 76%, m.p.: ${ }^{179-181{ }^{\circ}} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO-d d_{6}) ppm $\delta 10.45(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.17$ $(\mathrm{m}, 2 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$, 2.02 (s, 3H); ${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}): $\delta \mathrm{ppm}$ 205.76, 172.47, 165.84, 160.81, 152.08, 144.49, 143.23, 137.91, 137.16, 135.41, 135.38, 130.23, 129.41, 129.33, 129.22, 125.38, 125.32, 115.01, 160.14, 103.95, 55.97, 32.25, 23.71; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3369 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1678 \mathrm{~cm}^{-1}\right) \mathrm{C}=\mathrm{C}$ ($1493 \mathrm{~cm}^{-1}$); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} 441.1814$; Found 441.1838

N -(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3-methylbenzamide (6v).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one ($500 \mathrm{mg}, 1.8115 \mathrm{mmole}$), 2-amino-5-chloro-3-methylbenzoic acid ($435 \mathrm{mg}, 2.3550 \mathrm{mmole}$), HATU ($1.7 \mathrm{~g}, 4.5289 \mathrm{mmole}$), DIPEA (584 mg , 4.5289 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 65%, m.p.: $130-132^{\circ}{ }^{\circ}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}) : $\delta \mathrm{ppm} 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.10$ (dd, J $=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.30$ (dd, J = 2.00, $7.40 \mathrm{~Hz}, 2 \mathrm{H}$), $7.12(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}$, 3H); ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 205.76,172.46,167.73,152.03,147.12,144.47$, 143.14, 137.94, 135.35, 132.82, 130.27, 129.39, 129.21, 126.18, 126.06, 125.64, 125.25, 118.18, 116.07, 115.26, $55.37,32.25,23.73,21.51$; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3355 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1692 \mathrm{~cm}^{-1}\right) \mathrm{C}=\mathrm{C}$ ($1539 \mathrm{~cm}^{-1}$); HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}_{2} 444.1473$; Found 444.1473

N -(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-5-chloro-2-nitrobenzamide (6w).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $(500 \mathrm{mg}, 1.8115 \mathrm{mmole})$, 5-chloro-2nitrobenzoic acid (543 mg, 2.3550 mmole), HATU ($1.7 \mathrm{~g}, 4.5289 \mathrm{mmole}$), DIPEA ($584 \mathrm{mg}, 4.5289$ mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 50%, m.p.: $118-120^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta \mathrm{ppm} 10.98(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{dd}, \mathrm{J}=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=$ $2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, \mathrm{J}=2.40,8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.38(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm}$ 205.67, 172.47, 163.23, 152.36, 145.29, $144.56,143.21,139.31,137.51,135.50,135.23,134.44,131.33,130.18,129.82,129.74,129.42$, 129.23, 126.80, 125.41, 124.22, 114.42, 32.27, 23.75; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3266 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}(1688$ $\left.\mathrm{cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1519 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2} 460.1064$; Found 460.1076

N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)-3-chloro-2-nitrobenzamide (6x).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $(450 \mathrm{mg}, 1.6304 \mathrm{mmole})$, 3-chloro-2nitrobenzoic acid (456 mg, 2.2826 mmole), HATU ($1.5 \mathrm{~g}, 4.0760 \mathrm{mmole}$), DIPEA ($525 \mathrm{mg}, 4.0760$ mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale Yellow solid, yield 86 \%, m.p.: $124-126^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta \mathrm{ppm} 11.15(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=8.40$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{~s}, 3 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}$, 3H); ${ }^{13}$ C NMR (100 MHz DMSO-d ${ }_{6}$): $\delta \mathrm{ppm}$ 205.03, 162.76, 162.64, 152.60, 147.40, 144.68, $143.12,137.63,135.61,134.86,133.67,132.78,131.38,130.15,129.71,129.32,128.80,128.53$, $125.58,125.24,125.18,115.15,31.22,23.13 ;$ IR Stretching; $\mathrm{N}-\mathrm{H}\left(3393 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1688 \mathrm{~cm}^{-1}\right)$, $\mathrm{C}=\mathrm{C}\left(1534 \mathrm{~cm}^{-1}\right) ;$ HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} 460.1064$; Found 460.1064 N-(7-Acetyl-6-methyl-8-phenylnaphthalen-2-yl)-2-(phenylamino)benzamide(6y).

1-(6-amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one $\quad(400 \mathrm{mg}, 1.4492 \mathrm{mmole})$, 2(phenylamino)benzoic acid (401 mg, 1.8840 mmole$)$, HATU ($1.1 \mathrm{~g}, 3.6231 \mathrm{mmole}$), DIPEA (476 mg , 3.6231 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 80%, m.p.: $208-200^{0} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta \mathrm{ppm} 10.61(\mathrm{~s}, 1 \mathrm{H}), 8.949$ (s, $1 \mathrm{H}), 8.20(\mathrm{dd}, \mathrm{J}=1.60,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=$ $7.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 2 \mathrm{H})$, 6.97-6.95 (m, 2H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $\left.{ }_{6}\right): \delta \mathrm{ppm}$ 205.76, $168.25,152.11,144.53,144.38,143.15,142.12,137.84,135.37,135.33,132.68,130.27,129.80$, $129.21,125.56,125.26,122.22,120.93,119.85,119.04,116.27,115.34,32.23,23.73$; IR Stretching; N-H (3328 cm $\left.{ }^{-1}\right), \mathrm{C}=\mathrm{O}\left(1710 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1591 \mathrm{~cm}^{-1}\right) ;$ HRMS (ESI) m/z: [M+H] Calculated for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} 472.2025$; Found 472.2027

N-(7-Acetyl-6-methyl-8-phenylnaphthalen-2-yl)-1-butyl-1H-indazole-3-carboxamide

 (6z).

1-(6-Amino-2-methyl-4-phenylquinolin-3-yl)ethan-1-one (400 mg, 1.4492 mmole), 1-butyl-1H-indazole-3-carboxylic acid ($379 \mathrm{mg}, 1.7391 \mathrm{mmole}$), HATU ($1.1 \mathrm{~g}, 2.8985 \mathrm{mmole}$), DIPEA (560 mg , 4.3478 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 90%, m.p.: $180-182^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta \mathrm{ppm} 10.60(\mathrm{~s}, 1 \mathrm{H}), 8.33$ (dd, J $=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, \mathrm{J}=2.00,27.40 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.880(\mathrm{qt}, 3 \mathrm{H})$, 1.2765 (sext, 2H), 0.89 (t, J = $-7.20 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm} 205.80,161.28$, 151.91, 144.45, 143.19, 141.12, 137.71, 137.26, 135.46, 135.39, 130.30, 129.38, 129.25, 127.19, 125.47, 125.34, 123.11, 122.88, 122.19, 115.01, 110.97, 49.09, 32.22, 31.97, 23.71, 19.90, 13.98; IR Stretching; $\mathrm{N}-\mathrm{H}\left(3335 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{O}\left(1698 \mathrm{~cm}^{-1}\right), \mathrm{C}=\mathrm{C}\left(1543 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ 477.2290; Found 477.2280

Ethyl 6-Acetamido-2-methyl-4-phenylquinoline-3-carboxylate (6aa).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($500 \mathrm{mg}, 1.6339 \mathrm{mmole}$), acetic acid (980 $\mathrm{mg}, 16.3398$ mmole), HATU ($1.2 \mathrm{~g}, 3.2679 \mathrm{mmole}$), DIPEA ($526 \mathrm{mg}, 4.0849 \mathrm{mmole}$) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 80% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.3$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 60%, m.p.: $158-160^{\circ} \mathrm{C}$; ${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}): $\operatorname{ppm} \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=$ $9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}$, 2H), $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO-, d_{6}): $\delta \mathrm{ppm}$ 169.07, 168.16, 152.41, 145.20, 144.42, 138.20, 135.70, 129.55, 129.01, 128.84, 127.70, 125.32, 124.48, 113.48, 61.45, 24.41, 23.52, 12.88. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ 349.1547; Found 349.1543.

Ethyl 2-Methyl-4-phenyl-6-(2,2,2-trifluoroacetamido)quinoline-3-carboxylate (6ab).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($500 \mathrm{mg}, 1.6339 \mathrm{mmole}$), trifluoroacetic acid ($745 \mathrm{mg}, 6.5359 \mathrm{mmole}$), HATU ($993 \mathrm{mg}, 2.6143 \mathrm{mmole}$), DIPEA ($421 \mathrm{mg}, 3.2679 \mathrm{mmole}$) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 80% ethyl acetate in Hexane).

TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 65%, m.p.: $138-140^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 11.52(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, \mathrm{J}=2.00,9.20 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}$ $=6.80 \mathrm{~Hz}, 2 \mathrm{H}$), $2.67(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm}$ $167.94,153.99,145.73,145.30,135.37,135.28,130.0,129.58,129.22,128.93,128.02,125.05$, 116.75, 61.59,3.66,13.87; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ 403.1264; Found 403.1257

Ethyl 6-(2-Cyanoacetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ac).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($500 \mathrm{mg}, 1.6339 \mathrm{mmole}$), 2-cyanoacetic acid ($416 \mathrm{mg}, 4.9019 \mathrm{mmole}$), HATU ($1.2 \mathrm{gm}, 2.6143 \mathrm{mmole}$), DIPEA ($526 \mathrm{mg}, 4.0849 \mathrm{mmole}$) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 68%, m.p.: $198-200^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm} 10.60(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=9.20,11.00 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97$ (d, J = $1.60 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82 (d, J = 8.00 Hz, 1H), 7.57-7.55 (m, 3H), 7.35-7.34 (m, 2H), 4.02 (q, J = $6.80 \mathrm{~Hz}, 2 \mathrm{H}$), $3.89(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 168.05,161.88,152.99,145.35,144.69,137.25,135.52,129.90,129.54,129.12$, 128.90, 127.84, 125.28, 124.29, 116.19, 114.16, 61.51, 27.25, 23.58, 13.88; HRMS (ESI) m/z: [M + $\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} 374.1499$; Found 374.1495

Ethyl 2-Methyl-4-phenyl-6-(2-Phenylacetamido)quinoline-3-carboxylate (6ad).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($650 \mathrm{mg}, 2.1241 \mathrm{mmole}$), 2-phenylacetic acid ($577 \mathrm{mg}, 4.2483 \mathrm{mmole}$), HATU ($1.6 \mathrm{gm}, 4.2483 \mathrm{mmole}$), DIPEA ($685 \mathrm{mg}, 5.3104 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane).

TLC: $\mathrm{R}_{f}=0.4$ ($\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield 90%, m.p.: $150-152^{0} \mathrm{C}^{1}{ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO-d d_{6}): $\delta \mathrm{ppm} 10.37$ ($\mathrm{s}, 1 \mathrm{H}$), 7.97 (dd, $\mathrm{J}=1.60,9.20 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 6 \mathrm{H}), 3.93(\mathrm{q}, \mathrm{J}=7.20$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.55(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=6.80 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta \mathrm{ppm}$ $169.89,168.13,152.51,145.24,144.50,138.12,136.16,135.67,129.66,129.54,129.04,128.87$, 128.76, 127.02, 125.33, 124.44, 113.57, 61.46, 55.38, 43.70, 23.53, 13.88; HRMS (ESI) m/z: [M + $\mathrm{H}]+$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} 425.1859$; Found 425.1854

Ethyl 2-Methyl-4-phenyl-6-(2-(p-tolyl)acetamido)quinoline-3-carboxylate (6ae).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($700 \mathrm{mg}, 2.2875 \mathrm{mmole}$), 2-(p-tolyl)acetic acid ($514 \mathrm{mg}, 4.2483 \mathrm{mmole}$), HATU ($1.7 \mathrm{gm}, 4.5751 \mathrm{mmole}$), DIPEA ($737 \mathrm{mg}, 5.7189 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ ($\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 92%, m.p.: $162-1164^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm} 10.41(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $(\mathrm{d}, \mathrm{J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.53-0.00(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=5.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=5.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 0.87$ (t, J = 7.20 Hz, 3H); ${ }^{13}$ C NMR (100 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm} 170.06,168.14,152.48,145.23,144.47$, 138.15, 136.05, 135.67, 133.08, 129.53, 129.50, 129.31, 128.87, 127.77, 125.32, 124.44, 113.54, 61.46, 43.32, 23.53, 21.10, 13.88; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$ 439.2016; Found 439.2009

Ethyl-6-(2-(2-Methoxyphenyl)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate

 (6af)

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (600 mg, 1.9607 mmole), 2-(2methoxyphenyl)acetic acid ($488 \mathrm{mg}, 2.9411 \mathrm{mmole}$), HATU (1.4 gm, 3.9215 mmole), DIPEA (632 $\mathrm{mg}, 4.9019 \mathrm{mmole})$ in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 94%, m.p.: $164-166^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta \mathrm{ppm} 10.37$ (s, 1H), 8.02 (dd, J $=2.00,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.33-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=6.80$ $\mathrm{Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 169.92,168.17,157.67,152.37,145.22,144.44,138.28,135.72$, $131.46,129.63,129.53,129.02,128.84,128.54,127.74,125.37,124.49,124.34,120.58,113.41$, $111.09,61.45,55.83,38.12,23.53,13.88$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ 455.1965; Found 455.1962

Ethyl 6-(2-(4-Methoxyphenyl)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ag)

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (700 mg, 2.2875 mmole), 2-(4methoxyphenyl)acetic acid (569 mg, . 3.4315 mmole), HATU ($1.7 \mathrm{gm}, 4.5751 \mathrm{mmole}$), DIPEA (737 $\mathrm{mg}, 5.7189 \mathrm{mmole})$ in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield : 92%, m.p.: $138-140^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 10.29(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{dd}$, $\mathrm{J}=2.00,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}$, $2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 170.24,168.14$, $158.53,145.22,144.49,138.18,135.70,130.62,129.63,129.54,129.02,128.85,128.06,127.78$, 125.34, 124.46, 114.20, 61.44, 55.48, 42.83, 23.51, 13.87; HRMS (ESI) m/z: [M + H] + Calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} 455.1965$; Found 455.1960

Ethyl 6-(2-(2-Chlorophenyl)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ah).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($700 \mathrm{mg}, \quad 2.2875 \mathrm{mmole}$), 2-(2chlorophenyl)acetic acid ($583 \mathrm{mg}, 3.4313$ mmole), HATU ($1.7 \mathrm{gm}, 4.5751 \mathrm{mmole}$), DIPEA (737 mg , $5.7189 \mathrm{mmole})$ in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.5$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield : 86%, m.p.: $152-154^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 10.56-0.00(\mathrm{~m}, 1 \mathrm{H})$, 8.07 (dd, J = 2.00, $8.80 \mathrm{~Hz}, 1 \mathrm{H}$), $8.04(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}$, $3 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.36(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 0.91$ $(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $_{6}$): $\delta \mathrm{ppm} 168.72,168.14,152.50,145.25,144.48$, $138.09,135.67,134.14,134.12,132.80,129.72,129.52,129.44,129.11,129.05,128.87,127.79$, 127.52, 125.36, 124.40, 113.47, 61.47, 41.20, 23.54, 13.88; IR Stretching; N-H (3354 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{O}$ (1701 $\mathrm{cm}^{-1}, \mathrm{C}=\mathrm{C}\left(1539 \mathrm{~cm}^{-1}\right)$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{3}$ 459.1470; Found 459.1465

Ethyl 6-(2-(4-Chlorophenyl)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ai).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($650 \mathrm{mg}, \quad 2.1241 \mathrm{mmole}$), 2-(4chlorophenyl)acetic acid ($541 \mathrm{mg}, 3.1862$ mmole), HATU ($1.6 \mathrm{gm}, 4.2483 \mathrm{mmole}$), DIPEA (685 mg , 5.3104 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ ($\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. pale yellow solid, yield : 85%, m.p ; $158-160^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 10.46(\mathrm{~s}, 1 \mathrm{H}), 8.03$ (dd, $\mathrm{J}=2.00,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$, 0.87 (t, J = $7.20 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $_{6}$): $\delta \mathrm{ppm} 169.53,168.13,152.56,145.25$,
$144.50,138.03,135.65,135.12,131.61,129.53,128.87,128.68,125.32,124.42,113.61,61.47,42.79$, 23.54, 13.88; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{3} 459.1470$; Found 459.1465

Ethyl 6-(2-(3-Bromophenyl)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6aj).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (700 $\mathrm{mg}, 2.2875 \mathrm{mmole}$), 2-(3bromophenyl)acetic acid (730 mg, 3.4313 mmole), HATU ($1.7 \mathrm{gm}, 4.5751 \mathrm{mmole}$), DIPEA (737 mg , 5.7189 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield: 88%, m.p. $144-146^{0}$ C; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 10.46(\mathrm{~s}, 1 \mathrm{H}), 8.04$ (d, J $=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=6.80 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33-7.31(m, 4H), $4.01(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 169.33,168.12,152.58,145.25,144.53,138.81,137.98,135.66$, $132.49,130.87,129.71,129.53,129.06,128.88,127.79,125.32,124.44,121.91,113.66,61.46,55.38$, 42.98, 23.54, 13.88; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3}$ 503.0964; Found 503.0959

Ethyl 6-(2-(4-Bromophenyl)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate

 (6ak).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (650 $\mathrm{mg}, 2.1241 \mathrm{mmole}$), 2-(4bromophenyl)acetic acid ($678 \mathrm{mg}, 3.1862 \mathrm{mmole}$), HATU ($1.6 \mathrm{gm}, 4.2483 \mathrm{mmole}$), DIPEA (685 mg , 5.3104 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield : 86%, m.p. $160-162^{0} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta \mathrm{ppm} 10.45(\mathrm{~s}, 1 \mathrm{H}), 8.04$ (dd, $\mathrm{J}=1.60,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.40$
$\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H})$, $2.63(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) : $\delta \mathrm{ppm} 169.44,168.13$, $152.56,145.24,144.52,138.02,135.66,135.54,131.99,131.60,129.53,129.05,128.87,127.78$, 125.32, 124.42, 120.27, 113.62, 61.46, 42.87, 23.54, 13.88;

Ethyl 2-methyl-6-(2-Phenoxyacetamido)-4-phenylquinoline-3-carboxylate (6al).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($500 \mathrm{mg}, 1.6339 \mathrm{mmole}$), 2-phenoxyacetic acid (496 mg , 3.2679 mmole), HATU ($1.2 \mathrm{~g}, 4.2483 \mathrm{mmole}$), DIPEA ($526 \mathrm{mg}, 4.0849 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6$ ($\mathrm{EtOAc} /$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 80%, m.p.: 196-198 ${ }^{0}$ C; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta \mathrm{ppm} 10.41(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{dd}, \mathrm{J}=1.60,9.00 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d d_{6} : $\delta \mathrm{ppm} 168.11,167.38,158.25,152.80,145.35,144.68,137.35,135.60$, $129.98,129.68,129.56,129.08,128.88,127.81,125.27,124.87,121.63,115.04,114.44,67.42,61.49$, 23.57, 13.89; HRMS (ESI) m/z: [M + H] + Calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} 441.1808$; Found 414.1804

Ethyl 6-(2-(Benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6am).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($500 \mathrm{mg}, \quad 1.6339 \mathrm{mmole}$), 2(benzyloxy)acetic acid ($542 \mathrm{mg}, 3.2679 \mathrm{mmole}$), HATU ($1.2 \mathrm{~g}, 3.2679 \mathrm{mmole}$), DIPEA (526 mg , 4.0849 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 70% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.3$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White solid, yield 75%, m.p.: $118-120^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 10.14$ (s, 1H), 8.09 (dd, J
$=2.40,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.37(\mathrm{~m}, 7 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 168.82,168.14,152.69,145.32,144.64,138.15$, $137.42,135.65,129.57,129.54,129.05,128.86,128.75,128.26,128.12,127.77,125.24,125.04$, 114.46, $72.85,69.81,61.47,23.56,13.89$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ 455.1965; Found 4505.1961

Ethyl 6 Cinnamamido-2-methyl-4-phenylquinoline-3-carboxylate (6an).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($400 \mathrm{mg}, 1.3071 \mathrm{mmole}$), cinnamic acid ($383 \mathrm{mg}, 2.6143 \mathrm{mmole}$), HATU ($993 \mathrm{mg}, 2.6143 \mathrm{mmole}$), DIPEA ($412 \mathrm{mg}, 3.2679 \mathrm{mmole}$) in DMF $(10 \mathrm{~mL})$ at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: R_{f} $=0.4\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 70\%, m.p.: 194$196^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm} 10.50(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{dd}, \mathrm{J}=2.00,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ $(\mathrm{d}, \mathrm{J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.37(\mathrm{~m}$, $2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=15.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 168.16,164.25,152.60,145.30,144.59,141.16,138.17,135.09$, $130.34,129.72,129.59,129.48,129.05,128.88,128.22,127.77,125.42,124.53,122.26,113.91$, 61.47, 23.56, 13.89; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ 437.1859; Found 437.1853

Ethyl 6-(4-Amino-2-methylbenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ao).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (360 mg, 1.1764 mmole), 4-amino-2methylbenzoic acid (355 mg, 2.3529 mmole), HATU ($894 \mathrm{mg}, 2.33529 \mathrm{mmole}$), DIPEA (379 mg , 3.2679 mmole) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 70% ethyl
acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale yellow solid, yield 74%, m.p. $104-106^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) ; $\delta \mathrm{ppm} \delta 8.83-8.82(\mathrm{~m}, 1 \mathrm{H}), 8.74-$ $8.73(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=7.60$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta \mathrm{ppm} 168.60,161.95$, $155.92,152.79,151.34,148.00,147.85,145.86,142.80,141.77,140.90,136.51,134.97,134.42$, $130.12,129.78,129.54,129.20,128.75,128.60,127.29,126.71,122.81,121.94,121.05,116.47$, $111.65,107.00,103.60,61.16,23.12,22.53,13.89$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} 440.1969$; Found 440.1960

Ethyl-6-(2-Amino-5-chloro-3-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ap).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (360 mg, 1.1764 mmole), 2-amino-5-chloro-3-methylbenzoic acid ($435 \mathrm{mg}, 2.3529 \mathrm{mmole}$), HATU ($849 \mathrm{mg}, 2.3529 \mathrm{mmole}$), DIPEA (379 $\mathrm{mg}, 2.3529 \mathrm{mmole})$ in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 70% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Brown solid, yield 60%, m.p.: $178-180^{0} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta \mathrm{ppm} 10.38(\mathrm{~s}, 1 \mathrm{H}), 8.76$ (s, $1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 7 \mathrm{H}), 6.20$ $(\mathrm{s}, 2 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=5.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 169.44,168.17,167.75,152.76,151.52,149.14,147.11,145.34,144.75,140.10$, $138.02,135.69,135.10,134.19,132.82,129.64,125.98,125.16,121.15,117.84,116.07,115.48$, $115.48,61.47,23.58,17.86,13.89 ;$ HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{3}$ 474.1579; Found 474.1573

Ethyl 6-(2-Amino-3,4-difluorobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6aq).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($400 \mathrm{mg}, 1.3071 \mathrm{mmole}$), 2-amino-3,4difluorobenzoic acid (452 mg, 2.6143 mmole), HATU ($993 \mathrm{mg}, 2.6143 \mathrm{mmole}$), DIPEA (421 mg , 3.2679 mmole) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 70% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.3$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Pale Yellow solid, yield 70%, m.p. : $188-190^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}); $\delta \mathrm{ppm} 10.20(\mathrm{~s}, 1 \mathrm{H})$, $8.10(\mathrm{dd}, \mathrm{J}=1.60,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz DMSO-, $\left.\mathrm{d}_{6}\right): \delta \mathrm{ppm} 168.16,166.75$, $152.77,145.32,144.72,137.93,135.65,129.76,129.62,129.53,129.31,129.09,128.89,128.76$, 128.62, 122.82, 115.35, 61.49, 23.56, 13.89; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ 462.1623; Found 462.1617

Ethyl 6-(5-Chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ar).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (300 mg, 1.3071 mmole), 5-chloro-2nitrobenzoic acid ($294 \mathrm{mg}, 1.4705 \mathrm{mmole}$), HATU ($745 \mathrm{mg}, 1.9607 \mathrm{mmole}$), DIPEA ($316 \mathrm{mg}, 2.4509$ mmole) in DMF (8 mL) at RT 10 h . The title compound was isolated (Eluent 70% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.3$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain].Yellow solid, yield 82%, m.p.: $210-212^{0} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta \mathrm{ppm} 400 \mathrm{MHz}, \mathrm{CDCl} 3: \delta 10.99(\mathrm{~s}, 1 \mathrm{H})$, 8.19-8.16 (m, 2H), $8.06(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm}$ 168.06, 163.24, 153.08, 145.44, 145.29, 144.84, 139.31, 137.57, $135.54,134.43,131.34,129.91,129.75,129.56,129.10,128.89,128.75,127.91,126.79,125.30$,
124.57, 114.64, 61.52, 23.60, 13.89; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{5}$ 490.1165; Found 490.1159

Ethyl 6-(3-Chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6as).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($400 \mathrm{mg}, 1.3071 \mathrm{mmole}$), 3-chloro-2nitrobenzoic acid ($394 \mathrm{mg}, 1.9607 \mathrm{mmole}$), HATU ($993 \mathrm{mg}, 2.6143 \mathrm{mmole}$), DIPEA ($421 \mathrm{mg}, 3.2679$ mmole) in DMF (10 mL) at RT 10 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 80%, m.p. : $124-126^{0} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta \mathrm{ppm} 8.14(\mathrm{dd}, \mathrm{J}=1.60,9.20 \mathrm{~Hz}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{t}, \mathrm{J}=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.36-7.36(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 168.10,162.63,152.95,147.47,145.37,144.85,138.37,135.58$, $133.30,132.60,132.02,129.67,129.58,129.09,128.88,127.84,125.42,125.24,125.01,115.37$, 61.50, 23.59, 13.89; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{5} 490.1164$; Found 490.1155

Ethyl 6-(3,5-Dimethoxybenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6at).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (500 $\mathrm{mg}, \quad 1.3071 \mathrm{mmole}$), 3,5dimethoxybenzoic acid (446 mg, 2.4509 mmole$)$, HATU ($1.2 \mathrm{mg}, 3.2679 \mathrm{mmole}$), DIPEA (526 mg , 4.0849 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 50% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4\left(\mathrm{EtOAc} /\right.$ Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 74%, m.p.: $170-172^{0} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 10.46(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{dd}, \mathrm{J}$ $=2.00,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.38-$
$7.37(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{q}, \mathrm{J}=3.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.66(\mathrm{~s}$, $3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta \mathrm{ppm}$ 168.17, 165.87, 160.80, $152.79,145.42,144.78,137.98,137.14,135.70,129.61,129.42,129.07,128.88,127.81,125.70$, 125.22, 115.19, 106.14, 103.95, 61.48, 55.96, 23.57, 13.89; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} 471.1914$; Found 471.1912

Ethyl 6-(3,6-Dichloropicolinamido)-2-methyl-4-phenylquinoline-3-carboxylate (6au).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (300 $\mathrm{mg}, \quad 0.9803 \mathrm{mmole}$), 3,6dichloropicolinic acid ($279 \mathrm{mg}, 1.4705 \mathrm{mmole}$), HATU ($745 \mathrm{mg}, 1.9607 \mathrm{mmole}$), DIPEA (316 mg , 2.4509 mmole) in DMF (8 mL) at RT 12 h . The title compound was isolated (Eluent 40% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.6$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow solid, yield 76%, m.p.: $174-176{ }^{0} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 11.06(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.16$ $(\mathrm{m}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.38-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d $_{6}$): $\delta \mathrm{ppm} 168.07,162.56,153.18,151.84,148.19,145.48,144.89,142.31,137.28,135.52$, $129.95,129.59,129.11,128.90,127.91,127.50,125.30,124.64,114.91,61.53,23.62,13.89$; HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} 480.0871$; Found 480.0872

Ethyl 6-(2,6-Dichloroisonicotinamido)-2-methyl-4-phenylquinoline-3-carboxylate (6av).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate (400 mg, 1.3071 mmole), 2,6dichloroisonicotinic acid (372 mg, 1.9607 mmole$)$, HATU ($993 \mathrm{mg}, 2.6143 \mathrm{mmole}$), DIPEA (421 mg , 3.2679 mmole) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 60% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.4$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. Yellow
solid, yield 70%, m.p. : $238-240^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO-d d_{6}): $\delta \mathrm{ppm} 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.18$ (dd, $\mathrm{J}=1.20,9.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=2.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.98-0.00(\mathrm{~m}, 2 \mathrm{H}), 7.56-0.00(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.36(\mathrm{~m}$, 2H), 4.03 ($\mathrm{q}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}$), $2.66(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.80 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO$\left.\mathrm{d}_{6}\right): \delta \mathrm{ppm} 168.04,162.03,153.33,150.22,145.55,145.01,137.15,135.51,129.75,129.57,129.16$, 128.93, 128.76, 127.93, 125.24, 122.42, 115.65, 61.54, 23.62, 13.89;

Ethyl 2-methyl-4-phenyl-6-(2-(Phenylamino)benzamido)quinoline-3-carboxylate (6aw).

Ethyl 6-amino-2-methyl-4-phenylquinoline-3-carboxylate ($400 \mathrm{mg}, \quad 1.3071 \mathrm{mmole}$), 2(phenylamino)benzoic acid ($427 \mathrm{mg}, 1.9607 \mathrm{mmole}$), HATU ($993 \mathrm{mg}, 2.6143 \mathrm{mmole}$), DIPEA (421 $\mathrm{mg}, 3.2679 \mathrm{mmole}$) in DMF (10 mL) at RT 12 h . The title compound was isolated (Eluent 70\% ethyl acetate in Hexane). TLC: $\mathrm{R}_{f}=0.2$ (EtOAc/Hexane 5:5) [silica gel, UV and KMnO_{4} stain]. White yield 60%, m.p.: $78-80^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta \mathrm{ppm} 10.54(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{dd}, \mathrm{J}=$ $2.00,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=9.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.48$ $(\mathrm{m}, 3 \mathrm{H}), 7.30-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{q}, \mathrm{J}=$ $7.20 \mathrm{~Hz}, 2 \mathrm{H}$), $2.58(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta \mathrm{ppm} 168.25$, $168.16,152.83,145.35,144.79,144.31,142.13,137.91,135.62,132.68,130.09,129.80,129.63$, $129.36,129.08,128.88,127.77,125.90,125.15,122.20,121.01,119.83,119.06,116.28,115.51$, 61.50, 23.59, 13.90; MS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]$ Calculated for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} 502.2$; Found 502.2

4. DFT Calculations for all Quinoline Derivatives (6a-6az) and (6aa-6aw)

DFT calculations were conducted at B3LYP/6-31+ $\mathrm{G}^{\prime}(\mathrm{d}, \mathrm{p})$ level using the Gaussian 09 program package. The results were related to compounds $\mathbf{6 a}$ (also depicted in the main text), $\mathbf{6 b} \mathbf{b} \mathbf{6 w}, \mathbf{6 a a}-\mathbf{6 a w}$, and related compounds. Figure 7(1)-V(49) illustrates the HOMO and LUMO molecular orbitals of the molecules $\mathbf{6 a - 6 z}$ and $\mathbf{6 a - 6 a w}$. While all LUMOs are essentially identical and delocalize primarily on the quinoline ring and carboxylic amide groups regardless of the substitution, the geometries of the HOMOs show clearly how the substituent at C 4 has an impact. The table made it abundantly evident
that the substituent at quinoline's C6 position has a significant impact on the HOMO levels of each derivative. In compound $\mathbf{6 a - 6 m}$, the transition from the quinoline ring to the carboxylic amide group is prominently visible. Compound 6 n's entire quinoline moiety contribution towards the amide group, while compound ($\mathbf{6 q , 6 p}$)'s pyridine ring's $\mathbf{6 q}$ LUMO (-2.41 eV) contribution only the coupling substituent of the quinoline moiety's HOMO $(-5.79 \mathrm{eV})$ and $\Delta \mathrm{E}$ is 3.37 eV . The HOMO and LUMO orbitals are frontier orbitals that govern reactivity. EHOMO and ELUMO are important parameters that determine electron donation ease and electron acceptance, respectively. Apart from these, there are several other reactivity parameters that play a crucial role in understanding the electron behavior of a molecule. Some of these parameters are global hardness (h), softness (S), electronegativity (c), chemical potential (m), electrophilicity index (w), electron-donating power (w-), and electronaccepting power $\left(\mathrm{w}^{+}\right)$. The global reactivity descriptors of a molecule, including the HOMO and LUMO values, are listed in Table VIII. In a specific analysis, it was found that compound - 6 c has the highest HOMO energy (-6.31 eV), indicating strong electron-donating ability, while molecule 6 w has the lowest LUMO energy (-3.90 eV), indicating superior electron-accepting properties. By studying these descriptors, we can gain insights into the molecular behavior, facilitating our understanding of chemical reactivity. reactivity parameters include global calculated formulae: $\Delta \mathrm{E}=$ LUMO-HOMO $(\mathrm{eV}), \mathrm{I}=-\operatorname{EHOMO}(\mathrm{eV}), \mathrm{A}=-\operatorname{ELUMO}(\mathrm{eV}), \chi=(\mathrm{I}+\mathrm{A}) / 2(\mathrm{eV}), \mu=-\chi(\mathrm{eV}), \eta=(\mathrm{I}-\mathrm{A}) / 2(\mathrm{eV}), \mathrm{S}=1 / \eta$ $(\mathrm{eV}), \omega=\mu^{2} / 2 \eta(\mathrm{eV}), \omega^{-}=(3 \mathrm{I}+\mathrm{A})^{2} / 16(\mathrm{I}-\mathrm{A}), \omega^{+}=(\mathrm{I}+3 \mathrm{~A})^{2} / 16(\mathrm{I}-\mathrm{A})$.

The electronic chemical potentials of acid amine cross-coupling reactions with some reagents used have tabulated in Table VIII. Compound 6w, for example, has an electronic chemical potential of 4.87 eV and acts as a strong electron-donating molecule. However, as the substituent present becomes more electron-withdrawing, the electronic chemical potential of the corresponding quinoline derivative decreases, as seen in the order $6 \mathrm{w}<6 \mathrm{x}<6 \mathrm{ar}<6 \mathrm{as}$. This causes an increase in the polar character of the reactions towards compounds $6 \mathrm{t}, 6 \mathrm{v}, 6 \mathrm{ap}, 6 \mathrm{aq}$ and 6 a

Table S1: FMO parameters and Global reactivity Description of the compounds.

S No.	Code	HOMO	LUMO	ΔE	I	A	χ	μ	η	S	ω	ω^{-}	ω^{+}
1	6 a	-5.954	-2.234	3.720	5.954	2.234	4.094	-4.094	1.86	0.538	4.506	6.785	2.691
2	6 b	-6.173	-2.341	3.832	6.173	2.341	4.257	-4.257	1.916	0.522	4.729	7.097	2.84
3	6 c	-6.317	-2.377	3.940	6.317	2.377	4.347	-4.347	1.97	0.508	4.796	7.215	2.868
4	6 d	-5.837	-2.084	3.753	5.837	2.084	3.9605	-3.961	1.877	0.533	4.179	6.394	2.433
5	6 e	-5.818	-2.071	3.747	5.818	2.071	3.9445	-3.945	1.874	0.534	4.152	6.358	2.414
6	$6 f$	-5.755	-2.059	3.696	5.755	2.059	3.907	-3.907	1.848	0.541	4.13	6.314	2.407
7	6 g	-5.893	-2.159	3.734	5.893	2.159	4.026	-4.026	1.867	0.536	4.341	6.587	2.561
8	6 h	-5.893	-2.063	3.830	5.893	2.063	3.978	-3.978	1.915	0.522	4.132	6.36	2.382
9	6 i	-5.91	-2.114	3.796	5.91	2.114	4.012	-4.012	1.898	0.527	4.24	6.483	2.471
10	6 j	-5.901	-2.106	3.795	5.901	2.106	4.0035	-4.004	1.898	0.527	4.223	6.462	2.458
11	6 k	-5.903	-2.108	3.795	5.903	2.108	4.0055	-4.006	1.898	0.527	4.228	6.467	2.462
12	61	-5.964	-2.191	3.773	5.964	2.191	4.0775	-4.078	1.887	0.53	4.407	6.681	2.603
13	6 m	-5.912	-2.156	3.756	5.912	2.156	4.034	-4.034	1.878	0.532	4.333	6.584	2.55
14	6 n	-5.756	-2.159	3.597	5.756	2.159	3.9575	-3.958	1.799	0.556	4.354	6.557	2.6
15	60	-5.702	-2.122	3.580	5.702	2.122	3.912	-3.912	1.79	0.559	4.275	6.454	2.542
16	6 p	-6.211	-2.603	3.608	6.211	2.603	4.407	-4.407	1.804	0.554	5.383	7.811	3.404
17	$6 q$	-5.794	-2.417	3.377	5.794	2.417	4.1055	-4.106	1.689	0.592	4.991	7.254	3.149
18	6 r	-6.065	-2.315	3.750	6.065	2.315	4.19	-4.19	1.875	0.533	4.682	7.011	2.821
19	6 s	-6.001	-2.192	3.809	6.001	2.192	4.0965	-4.097	1.905	0.525	4.406	6.692	2.595
20	6 t	-5.772	-2.132	3.640	5.772	2.132	3.952	-3.952	1.82	0.549	4.291	6.494	2.542
21	6 u	-5.851	-2.177	3.674	5.851	2.177	4.014	-4.014	1.837	0.544	4.385	6.622	2.608
22	6 v	-5.67	-2.268	3.402	5.67	2.268	3.969	-3.969	1.701	0.588	4.631	6.827	2.858
23	6w	-5.844	-3.908	1.936	5.844	3.908	4.876	-4.876	0.968	1.033	12.28	14.84	9.963
24	6 x	-5.779	-3.851	1.928	5.779	3.851	4.815	-4.815	0.964	1.037	12.03	14.55	9.738
25	$6 y$	-5.415	-2.069	3.346	5.415	2.069	3.742	-3.742	1.673	0.598	4.185	6.264	2.522
26	6 z	-5.597	-1.939	3.658	5.597	1.939	3.768	-3.768	1.829	0.547	3.881	5.993	2.225

27	6aa	-5.856	-2.114	3.742	5.856	2.114	3.985	-3.985	1.871	0.534	4.244	6.47	2.485
28	6ab	-6.198	-2.259	3.939	6.198	2.259	4.2285	-4.229	1.97	0.508	4.539	6.899	2.671
29	6 ac	-6.067	-2.225	3.842	6.067	2.225	4.146	-4.146	1.921	0.521	4.474	6.787	2.641
30	6ad	-5.747	-1.961	3.786	5.747	1.961	3.854	-3.854	1.893	0.528	3.923	6.086	2.232
31	6 ae	-5.736	-1.968	3.768	5.736	1.968	3.852	-3.852	1.884	0.531	3.938	6.099	2.247
32	6af	-5.682	-1.977	3.705	5.682	1.977	3.8295	-3.83	1.853	0.54	3.958	6.104	2.274
33	6ag	-5.629	-1.823	3.806	5.629	1.823	3.726	-3.726	1.903	0.525	3.648	5.748	2.022
34	6ah	-5.639	-1.801	3.838	5.639	1.801	3.72	-3.720	1.919	0.521	3.606	5.705	1.985
35	6ai	-5.806	-1.991	3.815	5.806	1.991	3.898	-3.898	1.908	0.524	3.983	6.171	2.273
36	6aj	-5.782	-1.967	3.815	5.782	1.967	3.8745	-3.875	1.908	0.524	3.935	6.11	2.236
37	6ak	-5.798	-1.985	3.813	5.798	1.985	3.8915	-3.892	1.907	0.525	3.972	6.155	2.264
38	6 al	-5.866	-2.072	3.794	5.866	2.072	3.969	-3.969	1.897	0.527	4.152	6.373	2.404
39	6 am	-5.817	-2.039	3.778	5.817	2.039	3.928	-3.928	1.889	0.529	4.084	6.284	2.356
40	6 an	-5.669	-2.071	3.598	5.669	2.071	3.87	-3.87	1.799	0.556	4.163	6.322	2.452
41	6 ao	-5.494	-1.884	3.610	5.494	1.884	3.689	-3.689	1.805	0.554	3.77	5.839	2.15
42	6ap	-5.623	-2.149	3.474	5.623	2.149	3.886	-3.886	1.737	0.576	4.347	6.506	2.62
43	6 aq	-5.925	-2.164	3.761	5.925	2.164	4.0445	-4.045	1.881	0.532	4.349	6.606	2.562
44	6ar	-5.701	-3.822	1.879	5.701	3.822	4.7615	-4.762	0.94	1.064	12.07	14.56	9.802
45	6as	-5.563	-3.721	1.842	5.563	3.721	4.642	-4.642	0.921	1.086	11.7	14.13	9.492
46	6at	-5.761	-2.056	3.705	5.761	2.056	3.9085	-3.909	1.853	0.54	4.123	6.308	2.4
47	6 au	-5.81	-2.415	3.395	5.81	2.415	4.1125	-4.113	1.698	0.589	4.982	7.25	3.137
48	6av	-6.107	-2.551	3.556	6.107	2.551	4.329	-4.329	1.778	0.562	5.27	7.656	3.327
49	6aw	-5.341	-1.946	3.395	5.341	1.946	3.6435	-3.644	1.698	0.589	3.91	5.944	2.3

FMO Diagrams (Figure S7):

Figure S7.1:

Figure S7.2:

Figure S7.3:

HOMO (6b)

HOMO (6c)

Figure S7.4:

Figure S7.5:
HOMO (6e)
LUMO (6e)

Figure S7.6:

Figure S7.7:

HOMO (6f)

LUMO (6f)

HOMO (6g)

LUMO (6g)

Figure S7.9:
HOMO (6i)
LUMO (6i)

Figure S7.10:

Figure S7.11:

Figure S7.12:
HOMO (61)

Figure S7.13:
HOMO (6m)
LUMO (6m)

Figure S7.16:
HOMO (6p)
LUMO (6p)

Figure S7.17:

HOMO (6q)

LUMO (6q)

Figure S7.18:

HOMO (6r)

LUMO (6r)

Figure S7.19:
HOMO (6s)
LUMO (6s)

Figure S7.20:

Figure S7.21:

HOMO (6u)

LUMO (6u)

Figure S7.22:

Figure S7.23:

Figure S7.24:
HOMO (6x)
HOMO (6w)

Figure S7.25:

LUMO (6y)

Figure S7.27:
HOMO (6aa)
LUMO (6aa)

Figure S7.28:

HOMO (6ab)

Figure S7.29:

Figure S7.30:
LUMO (6ad)

Figure S7.31:

Figure S7.32:
HOMO (6af)
LUMO (6af)

Figure S7.36:
HOMO (6aj)
LUMO (6aj)

Figure S7.38:
HOMO (6al)
LUMO (6al)

Figure S7.39:
HOMO (6am)
LUMO (6am)

Figure S7.40:
HOMO (6an)
LUMO (6an)

Figure S7.42:
HOMO (6ap)
LUMO (6ap)

Figure S7.43:

Figure S7.44:

Figure S7.45:

HOMO (6as)

LUMO (6ar)

LUMO (6as)

Figure S7.47:
HOMO (6au)
LUMO (6au)

Figure S7.49:

LUMO (6aw)

Figure S8: MEP Diagrams of compounds 6a-6z and 6aa-6aw.

TD-DFT

TD-DFT empowers investigations into various processes involving excited states, offering insights into phenomena such as molecular transitions and optical properties. This methodological synergy between DFT and TD-DFT furnishes a robust toolkit for comprehensively analyzing molecular
behavior, thereby advancing our understanding of chemical reactivity, spectroscopy, and materials science applications. Time-Dependent Density Functional Theory (TD-DFT) serves as a prevalent computational method for predicting absorption spectra in molecules. Subsequently, UV-vis spectra were calculated using the TD-DFT approach employing the B3LYP functional and 6-31G' (d,p) basis sets. These findings underscore the importance of meticulous analysis to reconcile theoretical predictions with experimental observations in spectral studies. All 31 compounds theoretical and experimental UV-vis spectra and λ max, Oscillation strength f, Energy.

Table S2: Theoretical $\lambda \max$, experimental $\lambda \max$, Oscillation strength, $\Delta \mathrm{E}$ of compounds.

Sr. No.	Compound code	Experimental $\lambda \operatorname{max~nm}$	Theoretical $\lambda \max \mathrm{nm}$	Oscillation strength, f	Energy eV
1	6a	341.12	374.55	0.0328	3.3102
2	6b	338.22	364.20	0.0657	3.403
3	6d	340.38	373.20	0.0356	3.3222
4	6 e	342.76	373.72	0.0323	3.3176
5	6 f	341.45	376.92	0.0139	3.2894
6	6 g	343.51	373.09	0.0324	3.3232
7	6 h	340.28	372.44	0.0373	3.329
8	6 i	344.68	369.36	0.0458	3.3568
9	6 j	341.09	369.49	0.0452	3.3555
10	6k	340.29	369.37	0.0453	3.3566
11	61	338.87	370.21	0.0481	3.349
12	6 m	337.12	368.49	0.042	3.3647
13	6 s	352.83	368.85	0.0632	3.3614
14	6u	352.63	375.31	0.0045	3.3035
15	6 v	347.33	380.24	0.0416	3.2607
16	6 z	309.18	371.00	0.0013	3.3419
17	6 aa	338.87	341.23	0.0030	3.6335
18	6 ab	372.65	359.51	0.0775	3.1749
19	6 ac	339.11	339.97	0.0020	3.6469
20	6 ad	342.78	335.07	0.0037	3.3143
21	6 ae	341.95	334.9	0.0004	3.7021
22	6af	340.42	332.86	0.0077	3.7249
23	6ag	342.67	335.54	0.0042	3.6951
24	6ah	340.22	335.19	0.0032	3.6989
25	6 ai	340.43	335.73	0.0014	3.693
26	6aj	339.17	336.72	0.0018	3.6821
27	6ak	340.54	336.32	0.0021	3.6865
28	6 al	337.72	338.72	0.0018	3.6604
29	6 am	338.16	338.24	0.0023	3.6656
30	6ao	370.32	374.17	0.0023	3.3135
31	6ap	350.27	373.76	0.0728	3.3172

Table S3. Selected electronic transitions contribution obtained from TD-DFT calculation with B3LYP/6-31 G' (d, p) basic level of Compounds.

Sr. No.	Compound code	$\lambda \max (\mathrm{nm})$	Oscillation strength, f	Energy (eV)	Selected Major Contribution
1	6a	$\begin{aligned} & \hline 414.28 \mathrm{~nm} \\ & 383.65 \mathrm{~nm} \\ & 374.55 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0004 \\ & 0.0343 \\ & 0.0328 \end{aligned}$	$\begin{aligned} & \hline 2.9927 \mathrm{eV} \\ & 3.2317 \mathrm{eV} \\ & 3.3102 \mathrm{eV} \end{aligned}$	$\begin{gathered} \hline \text { H-1 -> L (66 \%) } \\ \text { H -> L (53 \%) } \\ \text { H -> L (42 \%) } \end{gathered}$
2	6b	$\begin{aligned} & \hline 417.23 \mathrm{~nm} \\ & 382.29 \mathrm{~nm} \\ & 364.20 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0002 \\ & 0.0076 \\ & 0.0657 \end{aligned}$	$\begin{aligned} & \hline 2.9716 \mathrm{eV} \\ & 3.2432 \mathrm{eV} \\ & 3.4043 \mathrm{eV} \end{aligned}$	$\begin{gathered} \hline \text { H-1 -> L (70 \%) } \\ \text { H-2 -> L (65 \%) } \\ \text { H -> L (79 \%) } \end{gathered}$
3	6d	$\begin{aligned} & 409.82 \mathrm{~nm} \\ & 383.11 \mathrm{~nm} \\ & 373.20 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0005 \\ & 0.0211 \\ & 0.0356 \end{aligned}$	$\begin{aligned} & 3.0253 \mathrm{eV} \\ & 3.2362 \mathrm{eV} \\ & 3.3222 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (54 \%) } \\ \text { H ->L (40 \%) } \\ H->L(54 \%) \end{gathered}$
4	6 e	$\begin{aligned} & 409.43 \mathrm{~nm} \\ & 383.27 \mathrm{~nm} \\ & 373.72 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0005 \\ & 0.0231 \\ & 0.0323 \end{aligned}$	$\begin{aligned} & 3.0282 \mathrm{eV} \\ & 3.2349 \mathrm{eV} \\ & 3.3176 \mathrm{eV} \end{aligned}$	$\begin{gathered} \hline \text { H-1 ->L (53 \%) } \\ \text { H ->L (44 \%) } \\ \text { H ->L (50 \%) } \end{gathered}$
5	$6 f$	$\begin{aligned} & 408.64 \mathrm{~nm} \\ & 386.27 \mathrm{~nm} \\ & 376.92 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0009 \\ & 0.0393 \\ & 0.0139 \end{aligned}$	$\begin{aligned} & \hline 3.0340 \mathrm{eV} \\ & 3.2098 \mathrm{eV} \\ & 3.2894 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}-1->\mathrm{L}+1(52 \%) \\ \mathrm{H}->\mathrm{L}(73 \%) \\ \mathrm{H}-1->\mathrm{L}(42 \%) \end{gathered}$
6	69	$\begin{aligned} & 411.70 \mathrm{~nm} \\ & 383.10 \mathrm{~nm} \\ & 373.09 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0004 \\ & 0.0318 \\ & 0.0324 \end{aligned}$	$\begin{aligned} & 3.0115 \mathrm{eV} \\ & 3.2363 \mathrm{eV} \\ & 3.3232 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (61 \%) } \\ \text { H->L (53 \%) } \\ H->L(42 \%) \end{gathered}$
7	6h	$\begin{aligned} & 409.61 \mathrm{~nm} \\ & 382.31 \mathrm{~nm} \\ & 372.44 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0005 \\ & 0.0194 \\ & 0.0373 \end{aligned}$	$\begin{aligned} & 3.0269 \mathrm{eV} \\ & 3.2431 \mathrm{eV} \\ & 3.3290 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L+1 (54 \%) } \\ \text { H-2 ->L (41 \%) } \\ H->L(57 \%) \end{gathered}$
8	$6 i$	$\begin{aligned} & \hline 410.87 \mathrm{~nm} \\ & 381.52 \mathrm{~nm} \\ & 369.36 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0003 \\ & 0.0122 \\ & 0.0458 \end{aligned}$	$\begin{aligned} & 3.0176 \mathrm{Ev} \\ & 3.2497 \mathrm{eV} \\ & 3.3568 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (56 \%) } \\ \text { H-2 ->L (48 \%) } \\ H->L(69 \%) \end{gathered}$
9	6j	$\begin{aligned} & 410.58 \mathrm{~nm} \\ & 381.66 \mathrm{~nm} \\ & 369.49 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0004 \\ & 0.0123 \\ & 0.0452 \end{aligned}$	$\begin{aligned} & 3.0197 \mathrm{eV} \\ & 3.2485 \mathrm{eV} \\ & 3.3555 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (56 \%) } \\ \text { H-2 ->L (48 \%) } \\ H->L(69 \%) \end{gathered}$

10	6k	$\begin{aligned} & \hline 410.76 \mathrm{~nm} \\ & 381.39 \mathrm{~nm} \\ & 369.37 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0003 \\ & 0.0124 \\ & 0.0453 \end{aligned}$	$\begin{aligned} & \hline 3.0184 \mathrm{eV} \\ & 3.2509 \mathrm{eV} \\ & 3.3566 \mathrm{eV} \end{aligned}$	$\begin{gathered} \hline \text { H-1 ->L (56 \%) } \\ \text { H-2 ->L (48 \%) } \\ \text { H ->L (69 \%) } \end{gathered}$
11	61	$\begin{aligned} & \hline 412.60 \mathrm{~nm} \\ & 380.95 \mathrm{~nm} \\ & 370.21 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0003 \\ & 0.0225 \\ & 0.0481 \end{aligned}$	$\begin{aligned} & \hline 3.0049 \mathrm{eV} \\ & 3.2546 \mathrm{eV} \\ & 3.3490 \mathrm{eV} \end{aligned}$	$\begin{gathered} \hline \text { H-1 ->L (64 \%) } \\ \text { H-2 ->L (47 \%) } \\ \text { H ->L (59 \%) } \end{gathered}$
12	6m	$\begin{aligned} & 418.60 \mathrm{~nm} \\ & 378.81 \mathrm{~nm} \\ & 368.49 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0003 \\ & 0.0263 \\ & 0.0452 \end{aligned}$	$\begin{aligned} & 2.9619 \mathrm{eV} \\ & 3.2730 \mathrm{eV} \\ & 3.3647 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (82 \%) } \\ \text { H-2 ->L (53 \%) } \\ \text { H ->L (55 \%) } \end{gathered}$
13	$6 s$	$\begin{aligned} & \hline 412.70 \mathrm{~nm} \\ & 379.63 \mathrm{~nm} \\ & 368.85 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0004 \\ & 0.0110 \\ & 0.0632 \end{aligned}$	$\begin{aligned} & \hline 3.0042 \mathrm{eV} \\ & 3.2659 \mathrm{eV} \\ & 3.3614 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (61 \%) } \\ \text { H-2 ->L (57 \%) } \\ \text { H ->L (78 \%) } \end{gathered}$
14	6u	$\begin{aligned} & \hline 411.77 \mathrm{~nm} \\ & 387.23 \mathrm{~nm} \\ & 375.31 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0009 \\ & 0.0644 \\ & 0.0045 \end{aligned}$	$\begin{aligned} & \hline 3.0110 \mathrm{eV} \\ & 3.2018 \mathrm{eV} \\ & 3.3035 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-2 ->L (62 \%) } \\ \text { H ->L (89 \%) } \\ \text { H-3 ->L (59 \%) } \end{gathered}$
15	6v	$\begin{aligned} & \hline 416.32 \mathrm{~nm} \\ & 412.71 \mathrm{~nm} \\ & 380.24 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0133 \\ & 0.0021 \\ & 0.0416 \end{aligned}$	$\begin{aligned} & \hline 2.9781 \mathrm{eV} \\ & 3.0041 \mathrm{eV} \\ & 3.2607 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}->\mathrm{L}(94 \%) \\ \mathrm{H}-2 \text {->L (62 \%) } \\ \mathrm{H}-1->\mathrm{L}(54 \%) \end{gathered}$
16	6 z	$\begin{aligned} & \hline 405.20 \mathrm{~nm} \\ & 389.29 \mathrm{~nm} \\ & 371.00 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0021 \\ & 0.0626 \\ & 0.0013 \end{aligned}$	$\begin{aligned} & \hline 3.0599 \mathrm{eV} \\ & 3.1849 \mathrm{eV} \\ & 3.3419 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}-1->\mathrm{L}(56 \%) \\ \mathrm{H}->\mathrm{L}(91 \%) \\ \mathrm{H}-2->\mathrm{L}(55 \%) \end{gathered}$
17	6 aa	$\begin{aligned} & 389.26 \mathrm{~nm} \\ & 377.12 \mathrm{~nm} \\ & 341.23 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0138 \\ & 0.0669 \\ & 0.0030 \end{aligned}$	$\begin{aligned} & 3.1851 \mathrm{eV} \\ & 3.2877 \mathrm{eV} \\ & 3.6335 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 -> L (86 \%) } \\ \text { H -> L (83 \%) } \\ \text { H-2 -> L (91 \%) } \end{gathered}$
18	6ab	$\begin{aligned} & 390.51 \mathrm{~nm} \\ & 359.51 \mathrm{~nm} \\ & 334.90 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0058 \\ & 0.0775 \\ & 0.0080 \end{aligned}$	$\begin{aligned} & \hline 3.1749 \mathrm{eV} \\ & 3.4486 \mathrm{eV} \\ & 3.7021 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}-1->\mathrm{L}(86 \%) \\ \mathrm{H}->\mathrm{L}(68 \%) \\ \mathrm{H}-2 \text {->L (76 \%) } \end{gathered}$
19	6 ac	$\begin{aligned} & 391.08 \mathrm{~nm} \\ & 367.69 \mathrm{~nm} \\ & 339.97 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0079 \\ & 0.0772 \\ & 0.0020 \end{aligned}$	$\begin{aligned} & \hline 3.1703 \mathrm{eV} \\ & 3.3719 \mathrm{eV} \\ & 3.6469 \mathrm{eV} \end{aligned}$	$\begin{gathered} \hline \text { H-1 -> L (89 \%) } \\ \text { H -> L (80 \%) } \\ \text { H-2 -> L (85 \%) } \end{gathered}$
20	6ad	$\begin{aligned} & 386.39 \mathrm{~nm} \\ & 374.09 \mathrm{~nm} \\ & 335.07 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0046 \\ & 0.0634 \\ & 0.0037 \end{aligned}$	$\begin{aligned} & 3.2087 \mathrm{eV} \\ & 3.3143 \mathrm{eV} \\ & 3.7003 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}-1->\mathrm{L}(95 \%) \\ \mathrm{H}->\mathrm{L}(92 \%) \\ \mathrm{H}-2->\mathrm{L}(89 \%) \end{gathered}$
21	6 ae	$\begin{aligned} & \hline 386.77 \mathrm{~nm} \\ & 376.27 \mathrm{~nm} \\ & 334.90 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0042 \\ & 0.0617 \\ & 0.0044 \end{aligned}$	$\begin{aligned} & \hline 3.2057 \mathrm{eV} \\ & 3.2951 \mathrm{eV} \\ & 3.7021 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (95 \%) } \\ \text { H ->L (93 \%) } \\ \text { H-2 ->L (83 \%) } \end{gathered}$

22	6af	$\begin{aligned} & \hline 386.60 \mathrm{~nm} \\ & 383.60 \mathrm{~nm} \\ & 332.86 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0043 \\ & 0.0566 \\ & 0.0077 \end{aligned}$	$\begin{aligned} & \hline 3.2071 \mathrm{eV} \\ & 3.2321 \mathrm{eV} \\ & 3.7249 \mathrm{eV} \end{aligned}$	$\begin{aligned} & \text { H-1 ->L (96 \%) } \\ & \text { H-3 ->L (94 \%) } \\ & \text { H-2 ->L (72 \%) } \end{aligned}$
23	6 ag	$\begin{aligned} & \hline 386.59 \mathrm{~nm} \\ & 376.06 \mathrm{~nm} \\ & 335.54 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0047 \\ & 0.0612 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & \hline 3.2072 \mathrm{eV} \\ & 3.2969 \mathrm{eV} \\ & 3.6951 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (95 \%) } \\ \text { H ->L (93 \%) } \\ \text { H-3 ->L (88 \%) } \end{gathered}$
24	6ah	$\begin{aligned} & 386.06 \mathrm{~nm} \\ & 373.50 \mathrm{~nm} \\ & 335.19 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0050 \\ & 0.0640 \\ & 0.0032 \end{aligned}$	$\begin{aligned} & 3.2115 \mathrm{eV} \\ & 3.3195 \mathrm{eV} \\ & 3.6989 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (94 \%) } \\ \text { H->L (92 \%) } \\ \text { H-2 ->L (90 \%) } \end{gathered}$
25	6ai	$\begin{aligned} & \hline 390.42 \mathrm{~nm} \\ & 365.56 \mathrm{~nm} \\ & 335.73 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0038 \\ & 0.0652 \\ & 0.0014 \end{aligned}$	$\begin{aligned} & \hline 3.1757 \mathrm{eV} \\ & 3.3916 \mathrm{eV} \\ & 3.6930 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (94 \%) } \\ \text { H ->L (90 \%) } \\ \text { H-2 ->L (80 \%) } \end{gathered}$
26	6aj	$\begin{aligned} & \hline 386.71 \mathrm{~nm} \\ & 371.15 \mathrm{~nm} \\ & 336.72 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0063 \\ & 0.0634 \\ & 0.0018 \end{aligned}$	$\begin{aligned} & \hline 3.2061 \mathrm{eV} \\ & 3.3405 \mathrm{eV} \\ & 3.6821 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}-1->\mathrm{L}(92 \%) \\ \mathrm{H}->\mathrm{L}(88 \%) \\ \mathrm{H}-2->\mathrm{L}(895) \end{gathered}$
27	6ak	$\begin{aligned} & \hline 386.78 \mathrm{~nm} \\ & 371.41 \mathrm{~nm} \\ & 336.32 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0053 \\ & 0.0631 \\ & 0.0021 \end{aligned}$	$\begin{aligned} & \hline 3.2055 \mathrm{eV} \\ & 3.3382 \mathrm{eV} \\ & 3.6865 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H }->\mathrm{L}(93 \%) \\ \mathrm{H}->\mathrm{L}(90 \%) \\ \mathrm{H}-2->\mathrm{L}(905) \end{gathered}$
28	6al	$\begin{aligned} & \hline 387.18 \mathrm{~nm} \\ & 372.38 \mathrm{~nm} \\ & 338.72 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0104 \\ & 0.0742 \\ & 0.0018 \end{aligned}$	$\begin{aligned} & \hline 3.2022 \mathrm{eV} \\ & 3.3295 \mathrm{eV} \\ & 3.6604 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}-1->\mathrm{L}(89 \%) \\ \mathrm{H}->\mathrm{L}(85 \%) \\ \mathrm{H}-3->\mathrm{L}(90 \%) \end{gathered}$
29	6 am	$\begin{aligned} & 385.51 \mathrm{~nm} \\ & 373.92 \mathrm{~nm} \\ & 338.24 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 0.0145 \\ & 0.0680 \\ & 0.0023 \end{aligned}$	$\begin{aligned} & 3.2161 \mathrm{eV} \\ & 3.3158 \mathrm{eV} \\ & 3.6656 \mathrm{eV} \end{aligned}$	$\begin{gathered} \text { H-1 ->L (86 \%) } \\ \text { H ->L (82 \%) } \\ \text { H-2 ->L (90 \%) } \end{gathered}$
30	6 ao	$\begin{aligned} & \hline 394.79 \mathrm{~nm} \\ & 383.47 \mathrm{~nm} \\ & 374.17 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0756 \\ & 0.0015 \\ & 0.0023 \end{aligned}$	$\begin{aligned} & \hline 3.1405 \mathrm{eV} \\ & 3.2333 \mathrm{eV} \\ & 3.3135 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}->\mathrm{L}(93 \%) \\ \mathrm{H}-2->\mathrm{L}(91 \%) \\ \mathrm{H}-1->\mathrm{L}(96 \%) \end{gathered}$
31	6ap	$\begin{aligned} & 408.41 \mathrm{~nm} \\ & 386.31 \mathrm{~nm} \\ & 373.76 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \hline 0.0154 \\ & 0.0151 \\ & 0.0728 \end{aligned}$	$\begin{aligned} & \hline 3.0358 \mathrm{eV} \\ & 3.2094 \mathrm{eV} \\ & 3.3172 \mathrm{eV} \end{aligned}$	$\begin{gathered} \mathrm{H}->\mathrm{L}(98 \%) \\ \mathrm{H}-2->\mathrm{L}(83 \%) \\ \mathrm{H}-1->\mathrm{L}(81 \%) \end{gathered}$

Table S4. Density surface of the selected major contributions of compounds frontier molecular orbitals involved in electronic transitions of at Basic set level of B3LYP/6-31+ $\mathrm{G}^{\prime}(\mathrm{d}, \mathrm{p})$ using isosurface value of 0.02 au .

| Sr. |
| :---: | :---: | :---: | :---: | :---: |
| No. |
| Comp. |
| Code |\quad HOMO

Excited state-1

(

Excited state-
Excited state-3

Excited state-1
16

Excited state- 1

Excited state-3
Excited state-3
Excited state-3
Excited state-3

		Excited state-3 H-2 L
30	6 ao	Excited state-1 H L Excited state-2 H-2 L

		Excited state-3

Figure S9: Theoretical UV-Vis spectra of compounds by TD-DFT at level using the the B3LYP/6-
$31 G^{\prime}(\mathrm{d}, \mathrm{p})$.

5. Photophysical characteristics Study and Fluorescent Spectra.

The structural quinoline and extended π conjugation induced by the aromatic- system and amide functional group encouraged us to investigate the photophysical properties of compounds Thus, absorption and emission spectra were recorded for 31 compound the compounds (fig $9(1)-9(31)$) in methanol. In the absorption spectra of compounds 31 compounds. a higher energy band in the range of 250 to 320 nm begins with $\pi-\pi^{*}$ electronic transition [intramolecular charge transfer (ICT)] and other bands with lower energy $\mathrm{n}-\pi^{*}$ electronic transition in the region 320 to 380 nm were observed. The corresponding emission band was observed in the $410-520 \mathrm{~nm}$ region. In the emission spectra, it was observed that with the increase in the size of the aromatic ring connected by the pivotal bond to the quinoline core, the emission band has been shifted to higher wavelengths. All fluorescent spectra below Fig S9.1 to Fig S9.34.

All the compounds exhibited Absorbance, Emission and Stoke's shift values (Table 2, entries 1-31).

Photophysical Data (Table - S3)

Entry	Compound	$\lambda_{\text {Absorption (nm) }}$	$\lambda_{\text {Emission (nm) }}$	Stokes shift	Molar extinction Coefficient $\times 10^{4}$	Quantum Yield (ϕ)
	code			$\Delta \times 10^{4}$		Yield (ϕ)
1	6a	341.12	455.19	0.7347		
2	6 b	338.22	440.15	0.6858	6.2125	0.0020
3	6d	340.38	462.33	0.7766	4.6795	0.0014
4	6 e	342.76	452.81	0.7116	5.1485	0.0019
5	6 f	341.45	457.39	0.7444	5.0510	0.0022
6	6 g	343.51	450.43	0.6932	3.0205	0.0057
7	6 h	340.28	451.36	0.7239	5.3315	0.0020
8	6 i	344.68	448.98	0.6748	4.8225	0.0037
9	6 j	341.09	450.16	0.7103	4.2445	0.0038
10	6 k	340.29	450.38	0.7189	4.8250	0.0015
11	61	338.87	441.77	0.691	4.4505	0.0030
12	6 m	337.12	446.06	0.7252	3.6155	0.0050
13	6 s	352.83	452.8	0.6286	5.3030	0.0035
14	6 u	352.63	434.54	0.5368	6.2180	0.0005
15	6 v	347.33	450.28	0.5959	3.6155	0.00012
16	6 z	309.18	457.29	1.0411	7.9805	0.0012
17	6 aa	338.87	442.94	0.6961	6.4730	0.0013
18	6 ab	372.65	501.58	0.6921	6.5455	0.0021
19	6 ac	339.11	411.03	0.5168	5.3670	0.0171
20	6 ad	342.78	417.73	0.5259	8.2825	0.0096
21	6 ae	341.95	423.86	0.5685	8.3715	0.0103
22	6af	340.42	420.21	0.5602	7.1585	0.0156
23	6 ag	342.67	420.73	0.543	8.3370	0.0110
24	6 ah	340.22	418.34	0.5488	8.8605	0.0124
25	6ai	340.43	423.52	0.5771	9.5080	0.0062
26	6aj	339.17	422.27	0.5802	8.3370	0.0150
27	6ak	340.54	417.61	0.5431	7.9785	0.0188
28	6 al	337.72	416.98	0.5635	9.0055	0.0179
29	6 am	338.16	416.04	0.5547	8.1260	0.0053
30	6ao	370.32	502.67	0.7107	9.1775	0.0082
31	6ap	350.27	454.16	0.6545	6.9935	0.0154

4.1 Fluorescent Spectra

Fig S9.1 to S9.34
S9.1: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl) acetamide (6a).

6a $10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 341 nm
> Maximum emission: 455 nm
> Stokes Shift: 0.7347×10^{-4}

S9.2 (3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 338 nm
> Maximum emission: 440 nm
$>$ Stokes Shift:0.6858×10-4

S9.3: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

$10^{-5} \mathrm{M}$ solution in Methanol

- Maximum absorption: 340 nm
- Maximum emission: 462 nm
- Stokes Shift:0.7766×10-4

S9.4: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl) acetamide (6e).

$10^{-5} \mathrm{M}$ solution in Methanol
Maximum absorption: 342 nm
Maximum emission: 452 nm
Stokes Shift: 0.7116×10^{-4}

S9.5: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl) acetamide (6f).

$10^{-5} \mathrm{M}$ solution in Methanol
Maximum absorption: 341 nm
Maximum emission: 457 nm
Stokes Shift: 0.7444×10^{-4}

S9. 6: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl) acetamide (6g).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 343 nm
$>$ Maximum emission: 450 nm
$>\quad$ Stokes Shift: 0.6932×10^{-4}

S9.7: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl) acetamide (6h).

> $\quad 10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 340 nm
> Maximum emission: 451 nm
$>$ Stokes Shift:0.7239 $\times 10^{-4}$

S9.8: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-
chlorophenyl) acetamide (6i).

$10^{-5} \mathrm{M}$ solution in Methanol

- Maximum absorption: 344 nm
- Maximum emission: 448 nm
- Stokes Shift: 0.6748×10^{-4}

S9.9: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl) acetamide (6j).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 341 nm
> Maximum emission: 450 nm
$>\quad$ Stokes Shift:0.7103 $\times 10^{-4}$
S9.10: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl) acetamide (6 k).

$10^{-5} \mathrm{M}$ solution in Methanol

- Maximum absorption: 340 nm
- Maximum emission: 450 nm
- Stokes Shift:0.7189×10-4

S9.11: N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxy acetamide (61).

S9.12: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy) acetamide (6m)

S9.13: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

S9.14: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

S9.15: N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3methylbenzamide (6v).

> Maximum emission: 450 nm
$>$ Stokes Shift:0.5929×10-4
S9.16: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-1-butyl-1H-indazole-3-carboxamide
(6z).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 309 nm
> Maximum emission: 457 nm
> Stokes Shift: 1.0481×10^{-4}

S9.17: Ethyl 6-acetamido-2-methyl-4-phenylquinoline-3-carboxylate (6aa).

$10^{-5} \mathrm{M}$ solution in Methanol
$>$ Maximum absorption: 338 nm
> Maximum emission: 442 nm
$>\quad$ Stokes Shift:0.6961 $\times 10^{-4}$

S9.18: Ethyl 2-methyl-4-phenyl-6-(2,2,2-trifluoroacetamido) quinoline-3-carboxylate
(6ab).

$10^{-5} \mathrm{M}$ solution in Methanol

- Maximum absorption: 372 nm
- Maximum emission: 501 nm
$>\quad$ Stokes Shift:0.6921×10-4
S9.19: Ethyl 6-(2-cyanoacetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ac).

S9.20: Ethyl 2-methyl-4-phenyl-6-(2-phenylacetamido) quinoline-3-carboxylate (6ad).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 342 nm
> Maximum emission: 417 nm
Stokes Shift: 0.5259×10^{-4}

S9.21: Ethyl 2-methyl-4-phenyl-6-(2-(p-tolyl) acetamido) quinoline-3-carboxylate (6ae).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 341 nm
$>\quad$ Maximum emission: 423 nm

- Stokes Shift: 0.5685×10^{-4}

S9.22: Ethyl 6-(2-(2-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6af).

S9.23: Ethyl 6-(2-(4-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ag).

S9.24: Ethyl 6-(2-(2-chlorophenyl)acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ah).

S9.25: Ethyl 6-(2-(4-chlorophenyl)acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ai).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 340 nm Maximum emission: 423 nm Stokes Shift:0.5771×10-4

S9.26: Ethyl 6-(2-(3-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6aj).

S9.27: Ethyl 6-(2-(4-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ak)

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption:
340 nm
$>$ Maximum emission: 417 nm
$>$ Stokes Shift:0.5439×10-4
S9.28: Ethyl 2-methyl-6-(2-phenoxyacetamido)-4-phenylquinoline-3-carboxylate (6al).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 337 nm
> Maximum emission: 416 nm
$>\quad$ Stokes Shift: 0.5635×10^{-4}
S9.29: Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate
(6am).
 (6ao).

$10^{-5} \mathrm{M}$ solution in Methanol
> Maximum absorption: 370 nm
> Maximum emission: 502 nm
Stokes Shift: 0.7107×10^{-4}

S9.31: Ethyl 6-(2-amino-5-chloro-3-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ap).

S9.32: N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl) acetamide (6e).

Solid State
> Maximum absorption: 360 nm
> Maximum emission: 464 nm
Stokes Shift: 0.6226×10^{-4}

S9.33: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl) acetamide (6f).

Solid State

> Maximum absorption: 363 nm
> Maximum emission: 448 nm
> Stokes Shift: 0.5226×10^{-4}

S9.34: N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl) acetamide (6h).

6. IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT-135 and 2D NMR and HRMS Spectra.

Fig.S10 ${ }^{1} \mathrm{H}$ NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S11 ${ }^{13} \mathrm{C}$ NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a)

Fig.S12 DEPT-DEPT-135 of NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S13 H-H COSY NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Signature SIF VIT VELLORE
Signat
VN-029

Fig.S14 Enlarged H-H COSY NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S15 Enlarged H-H COSY NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S16 HSQC NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S17 Enlarged HSQC NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Signature SIF VIT VELLORE
VN-029

ppm
5
BRUKER

Fig.S18 Enlarged HSQC NMR of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S19 HRMS of N-(3-Acetyl-2-methyl-4-phenylquinolin-6-yl)acetamide (6a).

Fig.S20 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S21 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S22 DEPT-135 NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S23 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S24 HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S25 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S26 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-cyanoacetamide (6b).

Fig.S27 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Fig.S28 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Fig.S29 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Signature SIF VIT VELLORE
Signatu

Fig.S30 ${ }^{19}$ F NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Fig.S31 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Fig.S32 HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Fig.S33 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,2,2-trifluoroacetamide (6c).

Fig.S34 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

Fig.S35 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

Fig.S36 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

Fig.S37 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

Fig.S38 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

Fig.S39 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenylacetamide (6d).

Fig.S40 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl)acetamide (6e).

Fig.S41 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl)acetamide (6e).

Fig.S42 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl)acetamide (6e).

Thermo Scientific Orbitrap Exploris 120
Analysed by G SAIKRISHNA
IBR-DN-068 \#3-21 RT: 0.01-0.11 AV: 10 SB: 80 0.32-1.20 NL: 9.37E8
I: FTMS + p ESI Full ms [50.0000-2000.0000]
409.19091
$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{2}=409.19105$

Fig.S43 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl)acetamide (6e).

Fig.S44 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(p-tolyl)acetamide (6e).

Fig.S45 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl)acetamide (6f).

Fig.S46 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl)acetamide (6f).

Fig.S47 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl)acetamide
(6f).

Thermo Scientific Orbitrap Exploris 120
Analysed by G SAIKRISHNA
HBR-DN-067 \#3-21 RT: 0.01-0.11 AV: 10 SB: 80 0.32-1.20 NL: 7.62E8
T: FTMS +p ESI Full ms [50.0000-2000.0000]
425.18590
$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{2}=425.18597$

Fig.S48 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl)acetamide (6f).

Fig.S49 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-methoxyphenyl)acetamide (6f).

Signature SIF VIT VELLORE

Fig.S50 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-methoxyphenyl)acetamide (6 g).

Fig.S51 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-methoxyphenyl)acetamide (6 g).

Fig.S52 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-methoxyphenyl)acetamide (6 g).

Fig.S53 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-methoxyphenyl)acetamide (6g).

Fig.S54 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-methoxyphenyl)acetamide (6 g).

Fig.S55 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl)acetamide (6h).

Fig.S56 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl)acetamide (6h).

Mo

Fig.S57 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl)acetamide (6h).

Thermo Scientific Orbitrap Exploris 120
Analysed by G SAIKRISHNA
-HBR-DN-069 \#2-18 ${ }^{-}$RT: ${ }^{-} 0.01-0.09^{-} \mathrm{AV}^{-} 8^{-} \mathrm{SB}^{-}{ }^{-} 80^{-} 0.32-1.20^{-} \mathrm{NL}:-1.14 \mathrm{E} 9$
「: FTMS +p ESI Full ms [50.0000-2000.0000]
429.1362
$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}=429.13643$

Fig.S58 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl)acetamide (6h).

Fig.S59 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(2-chlorophenyl)acetamide (6h).

Fig.S60 ${ }^{1} \mathrm{H}$ NMR of 1-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-chlorophenyl)propan-2-one1 (6i).

Fig.S61 ${ }^{13}$ C NMR of 1-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-chlorophenyl)propan-2-one1
(6i).

Fig.S62 DEPT-135 of 1-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-chlorophenyl)propan-2-one1
(6i).

Thermo Scientific Orbitrap Exploris 120 Analysed by G SAIKRISHNA
HBR-DN-070 \#4-18 ${ }^{-} \mathrm{RT}^{-}{ }^{-} 0.02-0.09^{-} \mathrm{AV}^{-} 7^{-} \mathrm{SB}^{-}{ }^{-} 80^{-} 0.32-1.20^{-} \mathrm{NL}^{-} 1.55 \mathrm{E} 9$
T: FTMS + p ESI Full ms [50.0000-2000.0000]
429.13632 $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}=429.13643$

Fig.S63 HRMS of 1-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-chlorophenyl)propan-2-one1
(6i).

Fig.S64 FT-IR of 1-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-chlorophenyl)propan-2-onel (6i).

Fig.S65 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl)acetamide (6j).

Fig.S66 ${ }^{13} \mathrm{C}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl)acetamide (6j).

Fig.S67 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl)acetamide (6j).

「: FTMS + p ESI Full ms [50.0000-2000.0000]
473.08585
$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Br}=473.08592$
$-0.14647 \mathrm{ppm}$

Fig.S68 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl)acetamide (6j).

Fig.S69 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(3-bromophenyl)acetamide (6j).

Fig.S70 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl)acetamide (6k).

Fig.S71 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl)acetamide (6k).

Fig.S72 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl)acetamide (6k).

Thermo Scientific Orbitrap Exploris 120
Analysed by G SAIKRISHNA
HBR-DN-072 \#6-15 RT: 0.03-0.08 AV: 5 SB: 80 0.32-1.20 NL: 5.86E8
T : FTMS +p ESI Full ms [50.0000-2000.0000]
473.08568

Fig.S73 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl)acetamide (6k)

Fig.S74 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(4-bromophenyl)acetamide (6k).

Fig.S75 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S76 ${ }^{13} \mathrm{C}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S77 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Signature SIF VIT VELLORE
VN-035

Fig.S78 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S79 Enlarged H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S80 Enlarged H-H COSY of N-(3-acetyl-2-methyl-4-ph enylquinolin-6-yl)-2-phenoxyacetamide
(61).

Fig.S81 HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Signature SIF VIT VELLORE
VN-035

Fig.S82 Enlarged HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S83 Enlarged HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S84 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S85 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-phenoxyacetamide (61).

Fig.S86 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S87 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S88 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S89 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S90 Enlarged H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S91 Enlarged H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S92 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S93 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(benzyloxy)acetamide (6m).

Fig.S94 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)cinnamamide (6n).

Signature SIF VIT VELLORE
VN-030

Fig.S95 ${ }^{13} \mathrm{C}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)cinnamamide (6n).

Fig.S96 DEPT-135 of NMR OF N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)cinnamamide (6n).

Fig.S97 HRMS OF NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)cinnamamide (6n).

VN-030

Fig.S98 FT-IR OF NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)cinnamamide (6n).

Fig.S99 ${ }^{1} \mathrm{H}$ NMR of (E)-N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-methoxyphenyl)acrylamide (60).

Fig.S100 ${ }^{13} \mathrm{C}$ NMR of (E)-N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-methoxyphenyl)acrylamide (60).

Fig.S101 DEPT-135 of (E)-N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-methoxyphenyl)acrylamide (6o).

Fig.S102 HRMS of (E)-N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-methoxyphenyl)acrylamide (60).

Fig.S103 FT-IR of (E)-N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-(4-methoxyphenyl)acrylamide (60).

Fig.S104 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

Fig.S105 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

Fig.S106 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

Signature SIF VIT VELLORE
VN-039

Fig.S107 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

Fig.S108 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

Fig.S109 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2,6-dichloroisonicotinamide (6p).

Fig.S110 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,6-dichloropicolinamide (6q).

Fig.S111 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,6-dichloropicolinamide (6q).

Fig.S112 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,6-dichloropicolinamide (6q).

Fig.S113 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,6-dichloropicolinamide (6q).

Fig.S114 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,6-dichloropicolinamide (6q).

Fig.S115 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-bromonicotinamide (6r).

Fig.S116 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-bromonicotinamide (6r).

Fig.S117 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-bromonicotinamide (6r).

Fig.S118 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-bromonicotinamide (6r).

Fig.S119 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-bromonicotinamide (6r).

Fig.S120 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

Fig.S121 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

Fig.S122 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

Fig.S123 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

Fig.S124 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-hydroxybenzamide (6s).

Signature SIF VIT VELLORE VN-040

Fig.S125 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S126 ${ }^{13} \mathrm{C}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S127 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S128 H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Signature SIF VIT VELLORE
VN-040

BRUKER

Fig.S129 Enlarged H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4iodobenzamide (6t).

Fig.S130 Enlarged H-H COSY of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4iodobenzamide (6t).

Fig.S131 HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S132 Enlarged HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S133 Enlarged HSQC of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide
(6t).

Fig.S134 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S135 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-4-iodobenzamide (6t).

Fig.S136 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

Fig.S137 ${ }^{13} \mathrm{C}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

Fig.S138 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

Fig.S139 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

Fig.S140 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3,5-dimethoxybenzamide (6u).

Fig.S141 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3-
methylbenzamide (6v).

Fig.S142 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3methylbenzamide (6v).

Fig.S143 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3-
methylbenzamide (6v).

Fig.S144 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3-
methylbenzamide (6v).

Fig.S145 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-amino-5-chloro-3methylbenzamide (6v).

Fig.S146 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-chloro-2-nitrobenzamide (6w).

Fig.S147 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-chloro-2-nitrobenzamide (6w).

Fig.S148 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-chloro-2-nitrobenzamide (6w).

Fig.S149 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-5-chloro-2-nitrobenzamide (6w).

Fig.S150 ${ }^{1} \mathrm{H}$ NMR of N -(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-chloro-2-nitrobenzamide (6x).

Fig.S151 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-chloro-2-nitrobenzamide (6x).

Fig.S152 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-chloro-2-nitrobenzamide (6x).

Fig.S153 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-3-chloro-2-nitrobenzamide (6x).

Signature SIF VIT VELLORE
VN-052

Fig.S154 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(phenylamino)benzamide (6y).

Fig.S155 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(phenylamino)benzamide (6y).

Fig.S156 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(phenylamino)benzamide (6y).

Fig.S157 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(phenylamino)benzamide (6y).

Fig.S158 FT-IR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-2-(phenylamino)benzamide (6y).

Fig.S159 ${ }^{1} \mathrm{H}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-1-butyl-1H-indazole-3-
carboxamide (6z).

Fig.S160 ${ }^{13} \mathrm{C}$ NMR of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-1-butyl-1H-indazole-3-
carboxamide (6z).

Fig.S161 DEPT-135 of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-1-butyl-1H-indazole-3carboxamide (6z).

Fig.S162 HRMS of N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-1-butyl-1H-indazole-3-carboxamide (6z).

Fig.S163 FT-IR OF N-(3-acetyl-2-methyl-4-phenylquinolin-6-yl)-1-butyl-1H-indazole-3-carboxamide (6z).

Fig.S164 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-acetamido-2-methyl-4-phenyl quinoline-3-carboxylate (6aa)

Fig.S165 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-acetamido-2-methyl-4-phenyl quinoline-3-carboxylate (6aa).

Fig.S166 DEPT-135 of Ethyl 6-acetamido-2-methyl-4-phenyl quinoline-3-carboxylate (6aa).

HBR-DN-86 \#3-17 RT: 0.02-0.07 AV: 5 SB: 63 0.32-1.20 NL: 3.42E9 T: FTMS +pESI Full ms [50.0000-750.0000]
403.12577
$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{3}=403.12640$

Fig.S167 HRMS of Ethyl 6-acetamido-2-methyl-4-phenyl quinoline-3-carboxylate (6aa).

Fig.S168 ${ }^{1} \mathrm{H}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2,2,2-trifluoroacetamido) quinoline-3-carboxylate (6ab).
VN-086

$\begin{array}{llllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \mathrm{ppm}\end{array}$

Fig.S169 ${ }^{13} \mathrm{C}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2,2,2-trifluoroacetamido) quinoline-3-carboxylate (6ab).

Fig.S170 DEPT-135 of Ethyl 2-methyl-4-phenyl-6-(2,2,2-trifluoroacetamido) quinoline-3-carboxylate (6ab).

Fig.S171 HRMS of Ethyl 2-methyl-4-phenyl-6-(2,2,2-trifluoroacetamido) quinoline-3-carboxylate (6ab).

Fig.S172 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-cyanoacetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ac). Signature SIF VIT VELLORE
VN-075 VN-075

Fig.S173 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-cyanoacetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ac).

Fig.S174 DEPT-135 of Ethyl 6-(2-cyanoacetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ac).

HBR-DN-0́75 \#1-15 RT: 0.00-0.06 AV: 5 SB: 63 0.32-1.20 NL: 3.53E9 T: FTMS + p ESI Full ms [50.0000-750.0000]

$$
\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{3}=374.1499
$$

Fig.S175 HRMS of Ethyl 6-(2-cyanoacetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ac).

Fig.S176 ${ }^{1} \mathrm{H}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2-phenylacetamido) quinoline-3-carboxylate(6ad).

Fig.S177 ${ }^{13} \mathrm{C}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2-phenylacetamido) quinoline-3-carboxylate(6ad).

Fig.S178 DEPT-135 of Ethyl 2-methyl-4-phenyl-6-(2-phenylacetamido) quinoline-3-carboxylate(6ad).

Fig.S179 HRMS of Ethyl 2-methyl-4-phenyl-6-(2-phenylacetamido) quinoline-3-carboxylate(6ad).

Fig.S180 ${ }^{1} \mathrm{H}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2-(p-tolyl)acetamido)quinoline-3-carboxylate (6ae).

Fig.S181 ${ }^{13} \mathrm{C}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2-(p-tolyl)acetamido)quinoline-3-carboxylate (6ae).

Fig.S182 DEPT-135 of Ethyl 2-methyl-4-phenyl-6-(2-(p-tolyl)acetamido)quinoline-3-carboxylate (6ae).

HBR-DN-61 \#1-29 RT: 0.00-0.13 AV: 10 SB: 64 0.32-1.20 NL: 2.71E9
$\mathrm{T}:$ FTMS +p ESI Full ms [50.0000-750.0000]

Calculated Mass $(\mathrm{M}+1)=439.2016$
Found $=439.2009$

Fig.S183 HRMS of Ethyl 2-methyl-4-phenyl-6-(2-(p-tolyl)acetamido)quinoline-3-carboxylate (6ae).

Fig.S184 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(2-methoxyphenyl)acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6af).

Fig.S185 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-(2-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6af).

Fig.S186 DEPT-135 of Ethyl 6-(2-(2-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6af).

Fig.S187 HRMS of Ethyl 6-(2-(2-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6af).

Fig.S188 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(4-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ag).

Fig.S189 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-(4-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ag).

Fig.S190 DEPT-135 of Ethyl 6-(2-(4-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ag).

HBR-DN-060 \#4-24 RT: 0.02-0.10 AV: 7 SB: 63 0.32-1.20 NL: 3.33E9 T: FTMS + p ESI Full ms [50.0000-750.0000]

$$
\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{2}=455.19653
$$

Fig.S191 HRMS of Ethyl 6-(2-(4-methoxyphenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ag)

Fig.S192 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(2-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ah).

Fig.S193 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-(2-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ah).

Fig.S194 DEPT-135 of Ethyl 6-(2-(2-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ah).

HBR-DN-062 \#4-24 RT: 0.02-0.10 AV: 7 SB: 63 0.32-1.20 NL: 5.21E8 T: FTMS + p ESI Full ms [50.0000-750.0000]
$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Cl}=459.14700$

Fig.S195 HRMS of Ethyl 6-(2-(2-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ah).

Fig.S196 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(4-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ai).

Fig.S197 ${ }^{13}$ CNMR of Ethyl 6-(2-(4-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ai).

Fig.S198 DEPT-135 of Ethyl 6-(2-(4-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ai).

HBR-DN-063 \#4-24 RT: 0.02-0.10 AV: 7 SB: 63 0.32-1.20 NL: 8.88E8 $\mathrm{T}:$ FTMS +p ESI Full ms [50.0000-750.0000]

Fig.S199 HRMS of Ethyl 6-(2-(4-chlorophenyl) acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ai).

Fig.S200 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(3-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6aj).

BR̀UǨ́R
$\begin{array}{lr}\text { Current } \\ \text { Nata Parameters } \\ \text { EAME } & 13 \mathrm{C} \text { MMR } \\ \text { EPNO } & 47 \\ \text { PROCNO } & 1\end{array}$

$\begin{array}{lc}\text { F2 - Processing paraneters } \\ \text { SI } \\ \text { SI } & \\ \text { SF } & 100.64989542 \mathrm{MHz} \\ \text { WDU } & \mathrm{EM} \\ \text { SSB } & 0 \\ \text { LB } & 1.00 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.40\end{array}$

Fig.S201 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-(3-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6aj).

Fig.S202 DEPT-135 of Ethyl 6-(2-(3-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6aj).

Fig.S203 HRMS of Ethyl 6-(2-(3-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6aj).

Fig.S204 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(4-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ak).

Fig.S205 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-(4-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ak).

Fig.S206 DEPT-135 of Ethyl 6-(2-(4-bromophenyl) acetamido)-2-methyl-4-phenylquinoline-3carboxylate (6ak).
VN-073

Fig.S207 ${ }^{1} \mathrm{H}$ NMR of Ethyl 2-methyl-6-(2-phenoxyacetamido)-4-phenylquinoline-3-carboxylate (6al).

Fig.S208 ${ }^{13} \mathrm{C}$ NMR of Ethyl 2-methyl-6-(2-phenoxyacetamido)-4-phenylquinoline-3-carboxylate (6al).

Fig.S209 DEPT-135 of Ethyl 2-methyl-6-(2-phenoxyacetamido)-4-phenylquinoline-3-carboxylate (6al).

Fig.S210 HRMS of Ethyl 2-methyl-6-(2-phenoxyacetamido)-4-phenylquinoline-3-carboxylate (6al).

Fig.S211 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6am).

Fig.S212 13C NMR of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6am).

Fig.S213 DEPT-135 of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6am).

Fig.S214 FT-IR of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6am).

HBR-DN-074 \#8-26 RT: 0.04-0.11 AV: 6 SB: 63 0.32-1.20 NL: 2.07E9
T: FTMS + p ESI Full ms [50.0000-750.0000]
455.1961
$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{2}=455.1965$

Fig.S215 HRMS of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6am).

Fig.S216 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6an).

Fig.S217 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6an).

Fig.S218 DEPT-135 of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6an).

Fig.S219 HRMS of Ethyl 6-(2-(benzyloxy)acetamido)-2-methyl-4-phenylquinoline-3-carboxylate (6an).

Fig.S220 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(4-amino-2-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ao).

Fig.S221 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(4-amino-2-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ao).
Signature SIF VIT VELLORE

BRUKER

Fig.S222 DEPT-135 of Ethyl 6-(4-amino-2-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ao).

HBR-DN-80 \#2-23 RT: 0.02-0.10 AV: 7 SB: 63 0.32-1.20 NL: 1.06E8
T: FTMS $+p$ ESI Full ms [50.0000-750.0000]

Calculated Mass $(\mathrm{M}+1)=440.1969$
Found $=440.1960$

Fig.S223 HRMS of Ethyl 6-(4-amino-2-methylbenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ao).

Fig.S224 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-amino-5-chloro-3-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ap).

Fig.S225 ${ }^{13}$ C NMR of Ethyl 6-(2-amino-5-chloro-3-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ap).
VN-081

-

Fig.S226 DEPT-135 of Ethyl 6-(2-amino-5-chloro-3-methylbenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ap).

HBR-DN-81 \#3-21 RT: 0.02-0.08 AV: 6 SB: 63 0.32-1.20 NL: 4.97E8
T: FTMS +p ESI Full ms [50.0000-750.0000]
$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Cl}=474.1579$

Fig.S227 HRMS of Ethyl 6-(2-amino-5-chloro-3-methylbenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ap).

```
VN-084
```


Fig.S228 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2-amino-3,4-difluorobenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6aq).

Fig.S229 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(2-amino-3,4-difluorobenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6aq).

Fig.S230 DEPT-135 of Ethyl 6-(2-amino-3,4-difluorobenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6aq).

HBR-DN-85 \#4-17 RT: 0.02-0.07 AV: 5 SB: 63 0.32-1.20 NL: 1.58E9
T: FTMS + p ESI Full ms [50.0000-750.0000]

Calculated Mass $(\mathrm{M}+1)=462.1623$
Found $=462.1617$

Fig.S231 HRMS of Ethyl 6-(2-amino-3,4-difluorobenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6aq).

Fig.S232 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(5-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ar).

Fig.S233 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(5-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6ar).

Fig.S234 DEPT-135 of Ethyl 6-(5-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6ar).

HBR-DN-079 \#4-16 RT: 0.02-0.07 AV: 5 SB: 63 0.32-1.20 NL: 1.75E9
T: FTMS +p ESI Full ms [50.0000-750.0000]

Calculated Mass $(\mathrm{M}+1)=490.1164$

Fig.S235 HRMS of Ethyl 6-(5-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3- carboxylate (6ar).

Fig.S236 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(3-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6as).

Fig.S237 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(3-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6as).

Fig.S238 DEPT-135 of Ethyl 6-(3-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3carboxylate (6as).

HBR-DN-82 \#4-14 RT: 0.02-0.06 AV: 4 SB: 63 0.32-1.20 NL: 7.95E9 T: FTMS +p ESI Full ms [150.0000-2000.0000]
T: FTMS +p ESI Full ms [150.0000-2000.0000] 490.11554

Fig.S239 HRMS of Ethyl 6-(3-chloro-2-nitrobenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6as).

Fig.S240 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(3,5-dimethoxybenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6at).

VN-077

Fig.S241 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(3,5-dimethoxybenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6at).

Fig.S242 DEPT-135 of Ethyl 6-(3,5-dimethoxybenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6at).

Fig.S243 HRMS of Ethyl 6-(3,5-dimethoxybenzamido)-2-methyl-4-phenylquinoline-3-carboxylate (6at).

Fig.S244 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(3,6-dichloropicolinamido)-2-methyl-4-phenylquinoline-3-carboxylate (6au).

Fig.S245 ${ }^{13} \mathrm{C}$ NMR of Ethyl 6-(3,6-dichloropicolinamido)-2-methyl-4-phenylquinoline-3-carboxylate (6au).

Fig.S246 DEPT-135 of Ethyl 6-(3,6-dichloropicolinamido)-2-methyl-4-phenylquinoline-3-carboxylate (6au).

HBR-DN-078 \#5-17 RT: 0.03-0.07 AV: 4 SB: 63 0.32-1.20 NL: 1.71E9
T: FTMS + p ESI Full ms [50.0000-750.0000]

> 480.0872 $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Cl}=480.0871$
0.0794 ppm

Fig.S247 HRMS of Ethyl 6-(3,6-dichloropicolinamido)-2-methyl-4-phenylquinoline-3-carboxylate (6au).

Fig.S248 ${ }^{1} \mathrm{H}$ NMR of Ethyl 6-(2,6-dichloroisonicotinamido)-2-methyl-4-phenylquinoline-3carboxylate (6av).

Fig.S249 ${ }^{13}$ C NMR of Ethyl 6-(2,6-dichloroisonicotinamido)-2-methyl-4-phenylquinoline-3carboxylate (6av).

Fig.S250 DEPT-135 of Ethyl 6-(2,6-dichloroisonicotinamido)-2-methyl-4-phenylquinoline-3carboxylate (6av).

Fig.S251 ${ }^{1} \mathrm{H}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2-(phenylamino)benzamido)quinoline-3-carboxylate (6aw).

Fig.S252 ${ }^{13} \mathrm{C}$ NMR of Ethyl 2-methyl-4-phenyl-6-(2-(phenylamino)benzamido)quinoline-3carboxylate (6aw).

Fig.S253 DEPT-135 of Ethyl 2-methyl-4-phenyl-6-(2-(phenylamino)benzamido)quinoline-3carboxylate (6aw).

HBR-DN-84 \#4-26 RT: 0.02-0.11 AV: 8 SB: 63 0.32-1.20 NL: 1.21E9
T: FTMS + p ESI Full ms [50.0000-750.0000]

Fig.S254 MS-ESI of Ethyl 2-methyl-4-phenyl-6-(2-(phenylamino)benzamido)quinoline-3-carboxylate (6aw).

