Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supplements

Supplement 1a. Surface elemental mapping of the AFS-Cu-P catalyst showing Si, O, Cu and P elements

() s					Sum Sp	ectrum			
								Element	Weight%	Atomic%
								O K	54.72	68.37
								Si K	43.21	30.75
								P K	0.49	0.32
								C K	0.24	0.14
								Cu L	1.34	0.42
		Р						Totals	100.00	100.00
	Cu	P			Cu	Cu				
0		2	4	6	8	10				
Fulls	Scale 407	645 cts	Cursor: 11.43	7 (804 cts)			keV			

Supplement 1b. EDS data and elements percentage of the AFS-Cu-P catalyst components

Supplement 2. XPS of copper, phosphorus, silicon and oxygen in the AFS-Cu-P catalyst

Supplement 3. TGA profile of the as-prepared AFS-Cu-P; Comparison with AFS-Cu(II) and AFS

Supplement 4a. BET isotherm for the as-prepared AFS-Cu-P catalyst and the AFS-Cu(II)

Supplement 4b. Summary	of the BE	T results for AFS-Cu-l	P catalyst, AFS-	-Cu(II), and	l AFS
------------------------	-----------	------------------------	------------------	--------------	-------

	AFS	AFS-Cu(II)	AFS@100 Phos-Cu
BET Surface Area (m²/g)	525.32	546.15	232.38
Langmuir Surface Area (m²/g)	769.18	808.38	341.53
Pore Volume cm ³ /g	0.29399	0.35393	0.32922

Supplement 5. Comparison of the linear sweep voltammograms of the GC/CNT-AFS-Cu-P, GC/CNT-AFS-Cu(II) and GC/CNT-AFS electrodes in 1.0 M KOH

Supplement 6. Comparison of the linear sweep voltammograms of the GC/CNT-AFS-Cu-P electrode in presence and absence of hydrazine with GC in presence of hydrazine/1.0 M KOH

Supplement 7. Effect of hydrazine concentration on the oxygen evolution reaction at the GC/CNT-AFS-Cu-P electrode; the concentration ratio of hydrazine to KOH was kept constant. The scan rate is 10 mV·s⁻¹

Supplement 8. Effect of KOH concentration on the oxygen evolution reaction at the GC/CNT-AFS-Cu-P electrodde. The scan rate is 10 mV·s⁻¹.

Supplement 9. Effect of varying the scan rate on the linear sweep voltammograms behavior of the electrode GC/CNT-AFS-Cu-P in 0.33 M hydrazine/ 1.0 M KOH.

Electrode	Molecular	OER	Current	Overpotential
Material/Molecular	Species	Overpotential	Density/	_
Species	Oxidation		Specific	
	Overpotential		Current	
Co0·52Cu0·48/Cu@S–C	118 mV	1.3 V	10, 100 and	36, 210 and
Hydrazine[89]			200 mA.cm^{-2}	282 mV
D/Ni-Cu-Se/NF	1.335 V	1.395 V	10 mA cm^{-2}	1.335 V
Urea[90]				
RuCo/C	76.8 mV	-	$100 \text{ mA} \cdot \text{cm}^{-2}$	215.4 mV
Hydrazine[91]				
Pd/NiCo ₂ O ₄	6 mV	-	10 and 100	0.35 V and
Hydrazine[92]			mA.cm ⁻²	0.94 V
Co PANI/C	0.34 V	0.906 V	-	-
Hydrazine[93]				
Mn-doped Ni ₂ P	55 mV	0.5 V	10 mA.cm^2	55 mV
Hydrazine[94]				
Cu ₂ O-S-Co-CoFe	0.343 V	307 mV	20 mA.cm ⁻²	0.36 V
Hydrazine[95]				
Cu-CoFe/Co/NC[96]	281 mV	0.87 V	10 mA.cm^2	281 mV
RuNi	65 mV	-	10 mA.cm ⁻²	57.8 mV and
Hydrazine[97]			and 100	327 mV
			mA.cm ⁻²	
CNT-AFS-Cu-P	186 mV	298 mV	32 A.g ⁻¹ .cm ⁻²	298 mV
Hydrazine (this work)				

Supplement 10. Comparison of the performance of the present catalyst to copper- and othersbased catalysts with some figures of merit.

Supplement 11a. Repeated linear sweep voltammograms (LSVs) of the GC/ CNT-AFS-Cu-P electrode in 0.50 M KOH in the presence of 0.33 M hydrazine with a scan rate of 10 mV.s⁻¹.

Supplement 11b. Chronoamperometry of the GC/ CNT-AFS-Cu-P electrode exposed constant applied potential of 0.05 V in 0.33 M hydrazine/1.0 M KOH for an extended time of one hour.