For Supporting Information

Ferrocenyl-Triazole Complexes and their Use in Heavy Metal Cation Sensing

Khaled Al Khalyfeh^{a*}, Asma Ghazzy^{b,c}, Randa M Al-As'ad^a, Tobias Ruffer^d, Olfa Kanoun^e, Heinrich Lang^f

- a. Department of Chemistry, Faculty of Natural Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan.
- b. Faculty of Pharmacy. Faculty of Pharmacy and Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.
- c. Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University. Amman 19328, Jordan.
- d. Department of Inorganic Chemistry, Chemnitz University of Technology, 09126 Chemnitz, Germany...
- e. Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany.
- f. Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallics, Chemnitz University of Technology, 09126 Chemnitz, Germany.

* E-mail: k.khalyfeh@ahu.edu.jo.

Table of Content:

Table S 1. Selected bond distances (Å), angles (°), and plane intersections (°) of 3, 7 and 93
Table S 2. Percentage contributions to the Hirshfeld surface of 3, 7 and 9.
Table S 3. Comaprison of LODs for different electrochemical sensor for Cd^{2+} , Pb^{2+} and Cu^{2+}
determination4
Figure S 1. Illustration of C–H…N (black) contacts in 3
Figure S 2. Illustration of π π stacking in 3
Figure S 3. Illustration of C–H··· π contacts, C–H ··· H–C stacking and π π stacking in 7
Figure S 4. Illustration of C–H··· π and C–H···N contacts in 7
Figure S 5. Intermolecular interaction within the crystal backing of 9
Figure S 6. Intermolecular interaction within the crystal backing of 9
Figure S 7. Illustration of π π stacking, C–H···O contacts, C–H···C contacts, C–H···C contacts,
N ··· N contacts and CH ₂ ···C contacts in 97
Figure S 8. Full 2-D fingerprint plot for 3 representing intermolecular interactions
Figure S 9. Full 2-D fingerprint plot for 7 representing intermolecular interactions
Figure S 10. Full 2-D fingerprint plot for 9 representing intermolecular interactions
Figure S 11. ¹ H NMR spectrum of 3 in CDCl ₃ 9
Figure S 12. ¹ H NMR spectrum of 6 in CDCl ₃ 9
Figure S 13. ¹ H NMR spectrum of 7 in CDCl ₃ 10
Figure S 14. ¹ H NMR spectrum of 9 in CDCl ₃ 10
Figure S 15. ¹³ C NMR spectrum of 3 in CDCl ₃ 11
Figure S 16. ¹³ C NMR spectrum of 6 in CDCl ₃ 11
Figure S 17. ¹³ C NMR spectrum of 7 in CDCl ₃
Figure S 18. ¹³ C NMR spectrum of 9 in CDCl ₃ 12
Figure S 19. ESI-TOF Mass spectrum of 313
Figure S 20. ESI-TOF Mass spectrum of 6
Figure S 21. ESI-TOF Mass spectrum of 7
Figure S 22. ESI-TOF Mass spectrum of 9
Figure S 23. IR spectrum of 3 15
Figure S 24. IR spectrum of 6
Figure S 25. IR spectrum of 7
Figure S 26. IR spectrum of 9

Selected bond distances (Å)							
3		7		9			
C(1)-C(2)	1.497(8)	C(1)-N(1)	1.45(2)	C(11)-C(12)	1.364(11)		
C(1)-N(1)	1.477(6)	C(11)-C(12)	1.42(3)	C(11)-N(1)	1.352(9)		
C(2)-C(3)	1.371(9)	C(11)-N(1)	1.38(3)	C(12)-C(13)	1.504(11)		
C(2)-N(2)	1.358(8)	C(12)-C(13)	1.48(3)	C(12)-N(3)	1.378(11)		
C(3)-N(4)	1.346(8)	C(12)-N(3)	1.44(3)	C(13)-N(4)	1.513(14)		
C(4)-N(4)	1.427(8)	C(13)-O(1)	1.41(2)	C(31)-C(32)	1.361(12)		
N(2)–N(3)	1.330(7)	C(21)-N(4)	1.48(2)	C(31)-N(5)	1.346(10)		
N(3)–N(4)	1.343(7)	C(31)-C(32)	1.45(3)	C(32)–C(33)	1.492(12)		
		C(31)-N(4)	1.37(2)	C(32)–N(7)	1.372(12)		
		C(32–C(33)	1.46(3)	C(33)–N(8)	1.440(13)		
		C(32)–N(6)	1.41(3)	C(6)-N(1)	1.410(9)		
		C(33)-O(1)	1.38(2)	N(1)-N(2)	1.350(9)		
		N(1)-N(2)	1.43(2)	N(2)–N(3)	1.315(9)		
		N(2)–N(3)	1.33(2)	N(5)–N(6)	1.351(9)		
		N(4)–N(5)	1.37(3)	N(6)–N(7)	1.330(9)		
		N(5)–N(6)	1.32(2)				
		Selected bond an	gles (°)	1			
3	1	7	1	9	1		
C(1)#1-N(1)-C(1)	109.5(4)	C(11)-C(12)-C(13)	125(2)	C(11)-C(12)-C(13)	130.6(8)		
C(1)#1-N(1)-C(1)#2	109.5(4)	C(11)-C(12)-N(3)	111.0(17)	C(11)-C(12)-N(3)	108.1(7)		
C(1)#2-N(1)-C(1)	109.5(4)	C(11)-N(1)-C(1)	127.5(18)	C(11)-N(1)-C(6)	127.9(7)		
C(3)-C(2)-C(1)	128.0(7)	C(11)-N(1)-N(2)	114.3(16)	C(12)-C(11)-N(1)	105.0(7)		
C(3)-N(4)-C(4)	127.6(6)	C(31)-C(32)-C(33)	126(2)	C(31)-C(32)-C(33)	129.6(9)		
N(1)-C(1)-C(2)	112.5(5)	C(31)-N(4)-C(21)	123.5(18)	C(31)-C(32)-N(7)	108.6(8)		
N(2)-C(2)-C(1)	123.7(6)	C(31)-N(4)-N(5)	116.3(16)	C(31)-N(5)-C(26)	127.8(7)		
N(2)-C(2)-C(3)	108.3(6)	C(33)-O(1)-C(13)	112.3(16)	N(2)-N(1)-C(11)	111.0(6)		
N(2)-N(3)-N(4)	106.9(5)	N(1)-C(11)-C(12)	100.9(19)	N(2)-N(1)-C(6)	121.1(6)		
N(3)-N(2)-C(2)	108.7(5)	N(2)-N(1)-C(1)	118.1(16)	N(2)-N(3)-C(12)	108.8(7)		
N(3)-N(4)-C(3)	111.0(5)	N(2)-N(3)-C(12)	108.1(17)	N(3)-C(12)-C(13)	121.2(8)		
N(3)-N(4)-C(4)	121.1(6)	N(3)-C(12)-C(13)	124.5(19)	N(3)-N(2)-N(1)	107.1(6)		
	105.0(6)						
N(4)-C(3)-C(2)		N(3)-N(2)-N(1)	105.6(15)	N(4)-C(13)-C(12)	112.0(8)		
		N(4)-C(31)-C(32)	99.4(18)	N(5)-C(31)-C(32)	104.6(8)		
		N(5)-N(4)-C(21)	120.2(17)	N(6)-N(5)-C(26)	120.0(6)		
		N(5)-N(6)-C(32)	108.8(19)	N(6)-N(5)-C(31)	112.1(7)		
		N(6)-C(32)-C(31)	109.6(17)	N(6)-N(7)-C(32)	108.9(7)		
		N(6)-C(32)-C(33)	124(2)	N(7)-C(32)-C(33)	121.7(9)		
		N(6)-N(5)-N(4)	105.9(18)	N(7)-N(6)-N(5)	105.8(7)		
		O(1)-C(13)-C(12)	109.7(17)				
		O(1)-C(33)-C(32)	112.8(18)				
				N(8)-C(33)-C(32)	117.0(8)		

 Table S 1. Selected bond distances (Å), angles (°), and plane intersections (°) of 3, 7 and 9.

able S 2. Percentage contributions to the Hirshfeld surface of 3, 7 and 9.
--

	Included surface area				
Contents	3	7	9		
Н…Н	60.3	49.7	62.6		
H…N/N…H	21.2	23.6	17.4		
Н…С/С…Н	13.2	19.3	12.9		
С…С	2.5	4.3	2.9		
N…C/C…N	2.7	1.4	1.7		
Н…О/О…Н		1.6	1.4		
N…N			1.1		

Table S 3. Comaprison of LODs for different electrochemical sensor for Cd²⁺, Pb²⁺ and Cu²⁺ determination.

Modified Electrode	LOD {Cd ²⁺ }	LOD {Pb ²⁺ }	LOD {Cu ²⁺ }	[Ref]
Ferrocenyl-Trizol 3@SPCE	9.2 nM	6.3 nM	20.1 nM	This work
Ferrocenyl-Trizol 6@SPCE	30.5 nM	8.7 nM	23.9 nM	This work
Ferrocenyl-Trizol 7@SPCE	4.3 nM	29.0 nM	7.1 nM	This work
Ferrocenyl-Trizol 3@SPCE	3.7 nM	32.0 nM	7.1 nM	This work
Fc-NH2-Ni-MOF	7.1 nM	0.2 nM	6.3 nM	1
trGNO/Fc-NH2-UiO-66.	8.5 nM	0.6 nM	0.8 nM	2
RGO-CS/PLL/GCE	10.0 nM	20.0 nM	20.0 nM	3
NMC	1500 nM	50 nM	-	4
ZJU-27/GCE	1.66 nM	1.1 nM	-	5
GAs-UiO-66-NH ₂ /GCE	9.0 nM	1.0 nM	8.0 nM	6

Figure S 1. Illustration of C–H…N (black) contacts in 3.

Figure S 2. Illustration of π ... π stacking in **3**.

Figure S 3. Illustration of C–H··· π contacts (red), C–H ··· H–C stacking (orange) and π ... π stacking (black) in **7**.

Figure S 4. Illustration of C–H… π (red) and C–H…N (black) contacts in **7**.

Figure S 5. Intermolecular interaction within the crystal backing of 9.

Figure S 6. Intermolecular interaction within the crystal backing of 9.

Figure S 7. Illustration of π ... π stacking (black), C–H···O contacts (yellow), C–H···C contacts (blue), C–H···C contacts (red), N ··· N contacts (orange) and CH₂···C contacts (pink) in 9.

Figure S 8. Full 2-D fingerprint plot for **3**. (a) and the decomposed contacts representing (b) $H \cdots H$ (60.3 %), (c) $C \cdots H/H \cdots C$ (13.2 %), (d) $N \cdots H/H \cdots N$ (21.2 %), (e) $C \cdots C$ (2.5 %) and (f) $C \cdots N/N \cdots C$ (2.1 %) intermolecular interactions.

Figure S 9. Full 2-D fingerprint plot for **7**. (a) and the decomposed contacts representing (b) H···H (49.7 %), (c) C···H/H···C (19.4 %), (d) N···H/ H···N (23.6 %), (e) C···C (4.3 %), (f) C···N/N···C (2.1 %), (g) O···H/ H···O (1.6 %) intermolecular interactions.

Figure S 10. Full 2-D fingerprint plot for **9**. (a) and the decomposed contacts representing (b) $H \cdots H$ (62.6 %), (c) $C \cdots H/H \cdots C$ (12.9 %), (d) $N \cdots H/H \cdots N$ (17.4 %), (e) $C \cdots C$ (2.9 %), (f) $C \cdots N/N \cdots C$ (1.7 %), (g) $O \cdots H/H \cdots O$ (1.4 %) and (g) $N \cdots N$ (1.1 %) intermolecular interactions.

Figure S 11. ¹H NMR spectrum of 3 in CDCl₃.

Figure S 12. ¹H NMR spectrum of 6 in CDCl₃.

Figure S 13. ¹H NMR spectrum of 7 in CDCl₃.

Figure S 14. ¹H NMR spectrum of 9 in CDCl₃.

Figure S 15. ¹³C NMR spectrum of 3 in CDCl₃.

Figure S 16. ¹³C NMR spectrum of 6 in CDCl₃.

Figure S 17. ¹³C NMR spectrum of 7 in CDCl₃.

Figure S 18. ¹³C NMR spectrum of 9 in CDCl₃.

Figure S 19. ESI-TOF Mass spectrum of 3.

Figure S 20. ESI-TOF Mass spectrum of 6.

Figure S 21. ESI-TOF Mass spectrum of 7.

Figure S 22. ESI-TOF Mass spectrum of 9.

Figure S 23. IR spectrum of 3.

Figure S 24. IR spectrum of 6.

Figure S 25. IR spectrum of 7.

Figure S 26. IR spectrum of 9.

References

- 1 J. Wan, Y. Shen, L. Xu, R. Xu, J. Zhang, H. Sun, C. Zhang, C. Yin and X. Wang, *J. Electroanal. Chem.*, 2021, **895**, 115374.
- 2 X. Wang, Y. Qi, Y. Shen, Y. Yuan, L. Zhang, C. Zhang and Y. Sun, *Sensors Actuators, B Chem.*, 2020, **310**, 127756.
- Z. Guo, D. di Li, X. ke Luo, Y. hui Li, Q. N. Zhao, M. meng Li, Y. ting Zhao, T. shuai Sun and C. Ma, J. Colloid Interface Sci., 2017, 490, 11–22.
- 4 L. Xiao, H. Xu, S. Zhou, T. Song, H. Wang, S. Li, W. Gan and Q. Yuan, *Electrochim. Acta*, 2014, **143**, 143–151.
- 5 W. Ye, Y. Li, J. Wang, B. Li, Y. Cui, Y. Yang and G. Qian, *J. Solid State Chem.*, 2020, **281**, 121032.
- 6 M. Lu, Y. Deng, Y. Luo, J. Lv, T. Li, J. Xu, S. W. Chen and J. Wang, *Anal. Chem.*, 2019, **91**, 888–895.