Data availability statements

Due to the large amount of data related to the calculation results in this paper and the limitation of the data sharing conditions of our institution, it is not possible to upload all the data to the public network, so we disclose the relevant calculation script files involved in the research process.

The molecular dynamics simulation software for Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) can be found at <u>https://www.lammps.org/</u>. The version of the software employed for this study is version [LAMMPS (29 Sep 2021 - Update 3)].

The molecular dynamics simulation script of the LAMMPS software as follow:

the input script file

units	metal
dimension	3
boundary	ррр
atom_style	atomic
neighbor	3.0 bin
neigh_modify	every 1 delay 0 check yes one 10000
read_data	Ni3Al72-Ni73.lmp
region	deformation block INF INF INF INF INF INF units box
group	deformation region deformation
pair_style	hybrid eam/alloy eam/fs
pair_coeff	* * eam/alloy Mishin-Ni-Al-2009.eam.alloy Ni Al
pair_coeff	* * eam/fs Ni_v2.eam.fs Ni NULL
min_style	cg
minimize	1.0-8 1.0e-8 1000 1000
timestep	0.001
thermo	1000
thermo_style	custom step temp pxx pyy pzz pxy pyz pxz lx ly lz pe ke etotal
thermo_modif	
velocity	all create 300.0 159357 mom yes rot no
fix	0 all npt temp 300 300 0.01 aniso 0 0 0.1
run	50000
unfix	0
reset_timestep	
change_box	all boundary s p p
region	left block INF 20 INF INF INF INF units box
region	right block 494 INF INF INF INF INF units box
group	left region left
group	right region right
group	boundary union left right
group	mobile subtract all boundary
velocity	left set 0.0 0.0 0.0 units box
	fixedbody boundary setforce 0.0 0.0 0.0
variable	temp equal 300.0
compute	new3d mobile temp
compute	new2d mobile temp/partial 0 1 1
thermo stulo	1000
thermo_style	custom step temp pxx pyy pzz pxy pyz pxz lx ly lz pe ke etotal 1 mobile stress/atom NULL
compute	
compute variable	2 mobile voronoi/atom sxxatom atom "c_1[1]/(c_2[1]*10000)"
	3 mobile reduce sum v sxxatom
compute variable	sxx equal c 3
variable	stressxx equal "-pxx/10000"
variable	l x equal lx
variable	Ix0 equal \${I x}
variable	strainx equal "(Ix-v Ix0)/v Ix0"
fix	4 right move linear 0.05 0.0 0.0 units box
	5 mobile nvt temp 300.0 300.0 0.01
	2p0 all print 10000 "\${strainx} \${stressxx} \${sxx}" file e-s.txt
dump	1 mobile custom 10000 dump.lammpstrj id type x y z v sxxatom
run	2000000
print "All done	

The data analysis software for The Open Visualization Tool (OVITO) can be found at <u>https://www.ovito.org/manual/index.html#.</u> The version of the software employed for this study is version [OVITO 3.3.0 released].

The data analysis scripts of the OVITO software as follow:

the dislocation density analysis script file

from ovito.data import * from ovito.io import import_file, export_file from ovito.modifiers import DislocationAnalysisModifier

def modify(frame, data, X):

Timestep = frame steps = (Timestep) print("step: %s" % steps)

#赋值位错线长度到total_line_length total_line_length = data.attributes['DislocationAnalysis.total_line_length']

#盒子体积 cell_volume = data.attributes['DislocationAnalysis.cell_volume']

#位错密度计算 dislocation density=total line length/cell volume

#打印位错线长度及位错密度 print ("dislocation_length: %f" % total_line_length) print("Dislocation density: %f" % dislocation density)

#输出dump步数及对应的位错密度到当前文件夹下dislocation_density.txt文件 f1 = open('C:/Users/Administrator/Desktop/DD,txt','a+') f1.write(str(steps)) f1.write(" ") f1.write(str(dislocation_density)) f1.write('\n') f1.close()

the phase volume fraction analysis script file

```
from ovito.data import *
from ovito.io import import_file
from ovito.modifiers import PolyhedralTemplateMatchingModifier
```

def modify(frame, data,X):

Timestep = frame steps = (Timestep) print("step: %s" % steps)

#计算结果输出: bcc/fcc/hcp/other原子数,原子总数 number_bcc=data.attributes['PolyhedralTemplateMatching.counts.BCC'] number_fcc=data.attributes['PolyhedralTemplateMatching.counts.FCC'] number_hcp=data.attributes['PolyhedralTemplateMatching.counts.HCP'] number_other=data.attributes['PolyhedralTemplateMatching.counts.OTHER'] total_number=data.particles.count

#bcc/fcc/hcp/other相分数
phase_fraction_bcc= number_bcc / total_number
phase_fraction_fcc= number_fcc / total_number
phase_fraction_hcp= number_hcp / total_number
phase_fraction_other= number_other / total_number

#打印相分数到屏幕

print ("total_number: %f" %total_number)
print ("phase_fraction_bcc: %f" %phase_fraction_bcc)
print ("phase_fraction_fcc: %f" %phase_fraction_fcc)
print ("phase_fraction_hcp: %f" %phase_fraction_hcp)
print ("phase_fraction_other: %f" %phase_fraction_other)

#输相分数到step-bcc-fcc-hcp-other.txt文件 f1 = open('C:/Users/Administrator/Desktop/gt-0.0001-300K-PTM.txt','a+') f1.write(str(steps)) f1.write("") f1.write(str(phase_fraction_bcc)) f1.write("") f1.write(str(phase_fraction_fcc)) f1.write(str(phase_fraction_hcp)) f1.write("") f1.write("") f1.write("") f1.write(") f1.write("n) f1.write('n') f1.cose()