Supporting Information

Confinement Induced Change of Microemulsion Phase Structure in Controlled Pore Glass (CPG) Monoliths

Margarethe Dahl,^{*a*} Cedric J. Gommes,^{*b*} René Haverkamp, ^{*c*} Kathleen Wood, ^{*d*} Sylvain Prévost, ^{*e*} Pierre Schröer, ^{*a*} Tomáš Omasta, ^{*a*} Tim Julian Stank, ^{*c*} Thomas Hellweg, ^{*c*} and Stefan Wellert ^{*a*}

a Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany. E-mail: s.wellert@tu-berlin.de

^b Department of Chemical Engineering, University of Liège B6 A, 3 allée du 6 aout, B-4000 Liège, Belgium.

^c Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.

^d Australian Nuclear and Technology Organisation, New Illawara Rd, Lucas Heights, NSW 2234, Australia

^e Institute Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble, France.

Institute of Chemical Technology Linnéstr. 3, 04103 Leipzig Working Group Prof. Dr. Dirk Enke E-mail: *dirk.enke@uni-leipzig.de* Tel.: 0341/9736302

Mercury Intrusion Measurements

а

Modal Diameter	7,8	nm
Median Diameter (50%)	7,0	nm
Porosity	20,1	%
Pore Volume	0,110	cm ³ g ⁻¹

Institute of Chemical Technology Linnéstr. 3, 04103 Leipzig Working Group Prof. Dr. Dirk Enke E-mail: *dirk.enke@uni-leipzig.de* Tel.: 0341/9736302

O

Mercury Intrusion Measurements

b

Leipzig, 02.05.2023:

Modal Diameter	16,2	nm	
Median Diameter (50%)	16,4	nm	
Porosity	31,4	%	
Pore Volume	0,208	cm ³ g ⁻¹	

С

Modal Diameter	69,7	nm	
Median Diameter (50%)	69,1	nm	
Porosity	37,7	%	
Pore Volume	0,275	cm ³ g ⁻¹	

Modal Diameter	132,8	nm
Median Diameter (50%)	133,0	nm
Porosity	44,4	%
Pore Volume	0,363	cm ³ q ⁻¹

Fig. S 1 Hg-intrusion certificates of the porous membranes CPG10, CPG20, CPG50 and CPG100 (a - d) from the supplier.

Fig. S 2 Adsorption Isotherms of the $C_{10}E_4$ surfactant onto the hydrophilic CPG (left) and hydrophobic CPG (right) with the fit of the Gu-Zhu model.

Fig. S 3 a) SANS signal of the air-filled hydrophilic CPG-OH and b) hydrophobic CPG-CH₃ after subtraction of the incoherent background with the TS fit taking multiple scattering into account (red line).

Fig. S 4 Integrated total scattering intensity Q_{exp} versus solid volume fraction Φ_S . The blue symbols represent the D₂O-filled hydrophilic samples. The air-filled CPG-CH₃ is shown as red symbols and the air-filled CPG-OH is shown as gray symbols. The error bars are from experiments on different instruments.