Design, Synthesis, and Evaluation of Novel Thiadiazole Derivatives as Potent VEGFR-2 Inhibitors: A Comprehensive *In vitro* and *In silico* Study

Ibrahim H. Eissa^{a*}, Walid E. Elgammal^b, Hazem A. Mahdy^a, Susi Zara ^c, Simone Carradori ^c, Dalal Z. Husein^d, Maymounah N. Alharthi^e, Ibrahim M. Ibrahim^f, Eslam B. Elkaeed^{g*}, Hazem Elkady^a, Ahmed M. Metwaly^{h*}

^aPharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt

^bDepartment of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

^cDepartment of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy

^dChemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt

^e Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

*Corresponding authors:

Ibrahim H. Eissa

Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. Email: Ibrahimeissa@azhar.edu.eg

Ahmed M. Metwaly

Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. Email: ametwaly@azhar.edu.eg

Eslam B. Elkaeed: Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia. Email: ekaeed@um.edu.sa

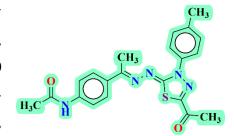
^f Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt

g Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia

^h Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt

	Content
S1. Chemistry	
S2. Biological testing	
S.3. <i>In silico</i> studies	
S.4. Spectral data	

Lab code	Paper code
WA-6	16
PH-5	20a
PH-6	20b
PH-10	21a
WC-10	21b


S.1. Chemistry

The chemicals, reagents, and reaction solvents used in this study were gained from Sigma-Aldrich, Alpha Chem, Fluka, and Loba and were not purified further. The melting points (mp), which have not been corrected, were measured using the SMP50 Digital Melting Point App provided by Bibby Scientific in Staffordshire. A Thermo Fisher Nicolet IS10 spectrophotometer was used to detect infrared spectra as solids on the potassium bromide disc (v_{max} in cm⁻¹) with a resolution of 4.0 cm⁻¹, covering 4000-400 cm⁻¹. H-NMR and ¹³C-NMR spectra (400 and 101 MHz) were recorded at the JNM-ECA 500 II Made by JEOL-JAPAN instrument through a solution of deuterated dimethyl sulfoxide. Proton chemical shifts are labeled in part per million (ppm), downfield from tetramethyl silane (TMS, δ =0) as an internal standard, and the following abbreviations (or a combination thereof) are used to describe splitting patterns: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and br, broad. The internal references used were the residual protons (2.50, 3.33 ppm for ¹H NMR, and 39.9 ppm for ¹³C NMR). Mass spectra were measured with a Thermo Scientific GCMS model (Isq Lt) using the Thermo X-Calibur software (Shimadzu, Kyoto, Japan) at the Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Nasr City,

Cairo, Egypt. Elemental studies were conducted at the Regional Center for Microbiology and Biotechnology, Al-Azhar University, Cairo, Egypt, with results accurate to within 0.4%. Thin-layer chromatography (TLC) was carried out on silica gel plates by using DCM: MeOH (95:5%), as the eluting system. The progress of the reaction and evaluation of product purity was determined using a UV indicator at 254 nm.

N-(4-((E)-1-(((Z)-5-Acetyl-3-(p-tolyl)-1,3,4-thiadiazol-2(3H)-ylidene)hydrazono)ethyl) phenyl) acetamide 16

Yellow powder (yield, 74%); m.p. = 201- 202 °C. FT-IR (v max, cm⁻¹): 3307 (NH), 3080, 3032, 3009 (C-H aromatic), 2922, 2863 (C-H aliphatic), 1687, 1666 (C=O); ¹H NMR (400 MHz, DMSO- d_6) δ 10.15 (s, 1H, NH), 7.94 – 7.92 (m, 2H, Ar-H), 7.85 – 7.83 (m, 2H, Ar-H), 7.67 (d, J = 8.7 Hz, 2H, Ar-H),

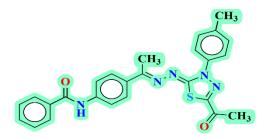
7.40 (d, J = 8.4 Hz, 2H, Ar-H), 2.60 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.09 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO- d_6) δ 190.2, 169.0, 164.5, 160.3, 150.8, 141.4, 137.2, 136.9, 132.2, 130.0, 127.6, 122.5, 119.0, 25.5, 24.6, 21.1, 15.6; Anal. Calcd. for C₂₁H₂₁N₅O₂S (407.49): C, 61.90; H, 5.19; N, 17.19. Found: C, 61.79; H, 5.46; N, 17.42%.

3.1.1. General procedure for the synthesis of derivatives 20a,b and 21a,b.

A solution of intermediates **19a,b** (1 molar) in ethanol (20 mL) was combined with triethylamine (1 molar) and the corresponding hydrazonoyl chlorides 5a,b and 8 (1 molar). The mixtures were heated for a period of 6 hours. The resulting solids were collected and subjected to purification with hexane, resulting in the desired products **20a,b** and **21a,b**, respectively.

N-(4-((E)-1-(((Z)-5-Acetyl-3-(2-chlorophenyl)-1,3,4-thiadiazol-2(3H)-ylidene)hydrazono) ethyl) phenyl)benzamide 20a

Pale yellow powder (yield, 70%); m.p. = 190-192 °C. FT-IR (v max, cm⁻¹): 3353 (NH), 3062, 3001 (C-H aromatic), 2919 (C-H aliphatic), 1675, 1655 (C=O); H NMR (400 MHz, DMSO- d_6) δ 10.45 (s, 1H, NH), 8.01 – 7.98 (m, 4H, Ar-H), 7.89 (m, 3H, Ar-H), 7.67-7.61 (m, 3H, Ar-H), 7.59-7.54 (m,



3H, Ar-H), 2.54 (s, 3H, CH₃), 2.23 (s, 3H, CH₃); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 190.1, 166.2, 164.2, 160.9, 151.5, 141.4, 138.3, 135.4, 132.9, 132.1, 131.6, 129.6, 128.9, 128.2, 127.5, 123.9,

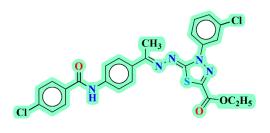
120.5, 25.5, 15.8; Anal. Calcd. for $C_{25}H_{20}ClN_5O_2S$ (489.98): C, 61.28; H, 4.11; N, 14.29. Found: C, 61.39; H, 4.24; N, 14.53%.

$N-(4-((E)-1-(((Z)-5-Acetyl-3-(p-tolyl)-1,3,4-thiadiazol-2(3H)-ylidene)hydrazono)\ ethyl)\ phenyl)$ benzamide 20b

Yellow powder (yield, 78%); m.p. = 185- 187 °C. FT-IR (v max, cm⁻¹): 3351, 3110 (NH), 3057 (C-H aromatic), 2986, 2916 (C-H aliphatic), 1746, 1706, 1655 (C=O); ¹H NMR (400 MHz, DMSO- d_6) δ 10.46 (s, 1H, NH), 8.00 – 7.91 (m, 8H, Ar-H), 7.65 (d, J = 6.9 Hz, 1H, Ar-H), 7.57

(t, J = 7.4 Hz, 2H, Ar-H), 7.41 (d, J = 8.1 Hz, 2H, Ar-H), 2.61 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 2.40 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO- d_6) δ 190.2, 166.2, 164.7, 160.3, 150.9, 141.3, 137.3, 136.9, 135.2, 132.8, 132.2, 130.0, 128.9, 128.2, 127.4, 122.6, 120.3, 25.5, 21.1, 15.7; Anal. Calcd. for C₂₆H₂₃N₅O₂S (469.56): C, 66.51; H, 4.94; N, 14.91. Found: C, 66.32; H, 5.06; N, 15.07%.

Ethyl (Z)-5-(((E)-1-(4-Benzamidophenyl)ethylidene)hydrazono)-4-(3-chlorophenyl)-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate 21a


Yellowish white powder (yield, 73%); m.p. = 230-232 °C. FT-IR (v max, cm⁻¹): 3285 (NH), 3080, 3027 (C-H aromatic), 2981, 2955, 2918 (C-H aliphatic), 1715, 1655 (C=O); ¹H NMR (400 MHz, DMSO- d_6) δ 10.47 (s, 1H, NH), 8.22 (t, J = 2.1 Hz, 1H, Ar-H), 8.03-7.98 (m, 3H,

Ar-H), 7.91-7.88 (m, 4H, Ar-H), 7.65 – 7.55 (m, 4H, Ar-H), 7.49 – 7.45 (m, 1H, Ar-H), 4.43 (q, J = 7.1 Hz, 2H, CH₂), 2.46 (s, 3H, CH₃), 1.36 (t, J = 7.1 Hz, 3H, CH₃); 13 C NMR (101 MHz, DMSO- d_6) δ 13 C NMR (101 MHz, DMSO- d_6) δ 166.2, 164.0, 160.9, 158.4, 143.9, 141.4, 140.4, 135.2, 133.8, 132.6, 132.2, 131.4, 128.9, 128.2, 127.5, 127.1, 121.6, 120.4, 120.3, 63.4, 15.8, 14.5; Anal. Calcd. for C₂₆H₂₂ClN₅O₃S (520.00): C, 60.05; H, 4.26; N, 13.47. Found: C, 60.29; H, 4.37; N, 13.60%.

Ethyl (Z)-5-(((E)-1-(4-(4-Chlorobenzamido)phenyl)ethylidene)hydrazono)-4-(3-chlorophenyl)-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate 21b

Yellow powder (yield, 75%); m.p. = 203- 205 °C. FT-IR (v max, cm⁻¹): 3310 (NH), 3077, 3000 (C-H aromatic), 2979, 2959, 2917 (C-H aliphatic), 1740, 1651 (C=O); 1 H NMR (400 MHz, DMSO- d_6) δ 1 H NMR (400 MHz, DMSO- d_6) δ 10.51 (s, 1H, NH), 8.04 – 8.01 (m, 2H, Ar-

H), 7.92-7.86 (m, 6H, Ar-H), 7.66 – 7.62 (m, 2H, Ar-H), 7.38 (d, J = 8.2 Hz, 2H, Ar-H), 4.42 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 1.35 (t, J = 7.1 Hz, 3H, 2.42 (s, 3H, CH₃)); ¹³C NMR (101 MHz, DMSO-d₆) δ 164.5, 160.1, 158.6, 142.9, 141.0, 137.2, 136.8, 133.9, 133.0, 130.2, 130.0, 129.0, 127.4, 122.6, 120.4, 63.2, 21.1, 15.7, 14.5; Anal. Calcd. for C₂₆H₂₁Cl₂N₅O₃S (554.45): C, 56.32; H, 3.82; N, 12.63. Found: C, 56.57; H, 3.98; N, 12.67%.

S2. Biological testing

S.2.1. *In vitro* anti-proliferative activity

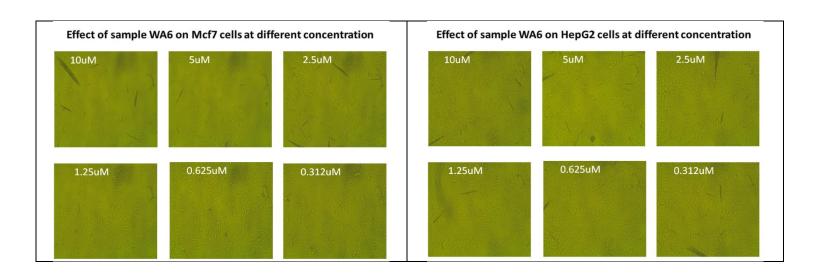
S.2.1.1. Determination of sample cytotoxicity on cells (MTT protocol)

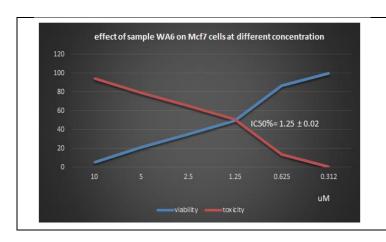
- 1-The 96 well tissue culture plate was inoculated with 1 X 10^5 cells / ml (100 ul / well) and incubated at 37°C for 24 hours to develop a complete monolayer sheet.
- 2- Growth medium was decanted from 96 well micro titer plates after confluent sheet of cells were formed, cell monolayer was washed twice with wash media.
- 3- two-fold dilutions of tested sample was made in RPMI medium with 2% serum (maintenance medium).
- 4- 0.1 ml of each dilution was tested in different wells leaving 3 wells as control, receiving only maintenance medium.
- 5- Plate was incubated at 37°C and examined. Cells were checked for any physical signs of toxicity, e.g. partial or complete loss of the monolayer, rounding, shrinkage, or cell granulation.
- 6- MTT solution was prepared (5mg/ml in PBS) (BIO BASIC CANADA INC).
- 8- 20ul MTT solution were added to each well. Place on a shaking table, 150rpm for 5 minutes, to thoroughly mix the MTT into the media.
- 9) Incubate (37C, 5% CO2) for 4 hours to allow the MTT to be metabolized.
- 10) Dump off the media. (dry plate on paper towels to remove residue if necessary.

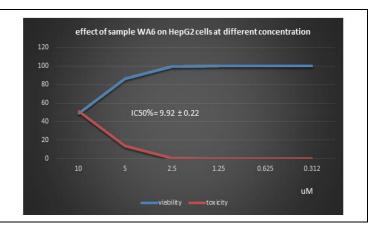
- 11) Resuspend formazan (MTT metabolic product) in 200ul DMSO. Place on a shaking table, 150rpm for 5 minutes, to thoroughly mix the formazan into the solvent.
- 12) Read optical density at 560nm and subtract background at 620nm. Optical density should be directly correlated with cell quantity.

S.2.1.2. Morphological assay

- ❖ Large-scale, morphological changes that occur at the cell surface, or in the cytoskeleton, can be followed and related to cell viability.
- ❖ Damage can be identified by large decreases in volume secondary to losses in protein and intracellular ions of due to altered permeability to sodium or potassium.
- ❖ Necrotic cells: nuclear swelling, chromatin flocculation, loss of nuclear basophilia
- ❖ Apoptotic cells: cell shrinkage, nuclear condansation, nuclear fragmentation

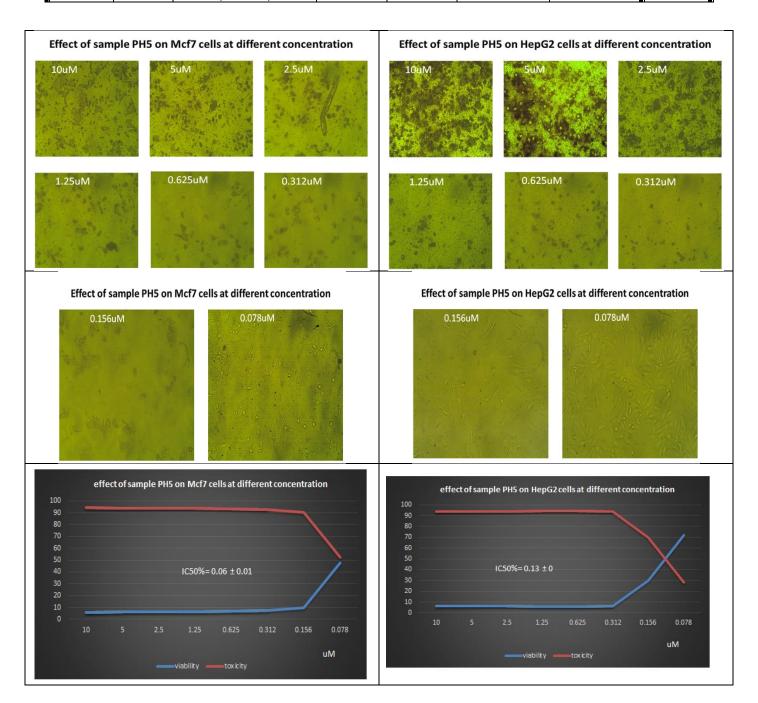



*** Cytotoxicity of WA-6 (compound 16) against MCF-7 and HepG2


ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Mcf7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.046	0.032	0.047	0.041667	0.004842	5.39025442	94.60974558	
	5	0.173	0.156	0.162	0.163667	0.004978	21.17291936	78.82708064	
11146	2.5	0.263	0.269	0.271	0.267667	0.002404	34.62699439	65.37300561	1.25 ±
WA6	1.25	0.388	0.367	0.393	0.382667	0.007965	49.50409659	50.49590341	0.02
	0.625	0.659	0.678	0.666	0.667667	0.005548	86.37343683	13.62656317	

0 0 4 0	0			0		00 - 4400	0.00000000	
0.312	0.771	: 0 /64	0 //8	0 / / 1	1 0 004041	1 99 //17/6//9	0.258732212	
0.512	0.771	: U./U -	0.770	0.771	0.00-0-1	JJ.1712011J	0.230/32212	

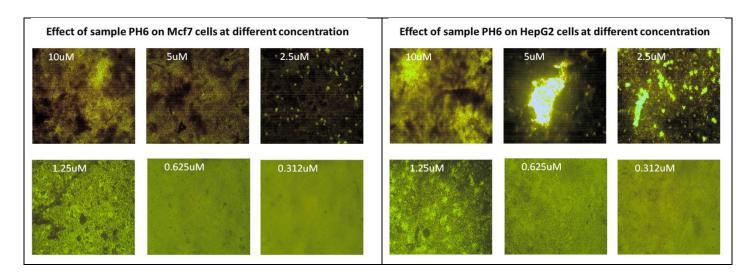
ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.348	0.371	0.356	0.358333	0.006741	48.81925522	51.18074478	
	5	0.643	0.618	0.632	0.631	0.007234	85.96730245	14.03269755	
	2.5	0.735	0.722	0.732	0.729667	0.00393	99.40962761	0.590372389	9.92 ±
WA6	1.25	0.731	0.729	0.738	0.732667	0.002728	99.81834696	0.181653043	0.22
	0.625	0.733	0.725	0.74	0.732667	0.004333	99.81834696	0.181653043	
	0.312	0.743	0.724	0.734	0.733667	0.005487	99.95458674	0.045413261	

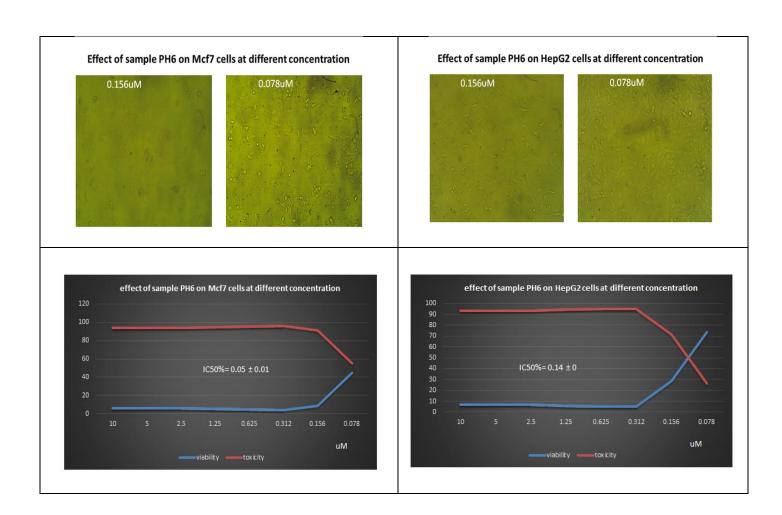


*** Cytotoxicity of PH-5 (compound 20a) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Mcf7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.042	0.048	0.044	0.044667	0.001764	5.778352738	94.22164726	
	5	0.047	0.05	0.046	0.047667	0.001202	6.166451056	93.83354894	
DUE	2.5	0.044	0.043	0.057	0.048	0.004509	6.209573092	93.79042691	0.06 ±
PH5	1.25	0.051	0.047	0.049	0.049	0.001155	6.338939198	93.6610608	0.01
	0.625	0.06	0.045	0.048	0.051	0.004583	6.59767141	93.40232859	
	0.312	0.055	0.061	0.058	0.058	0.001732	7.503234153	92.49676585	
	0.156	0.073	0.069	0.081	0.074333	0.003528	9.616213885	90.38378611	
	0.078	0.385	0.377	0.34	0.367333	0.01386	47.52048297	52.47951703	

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.044	0.045	0.046	0.045	0.000577	6.130790191	93.86920981	
	5	0.044	0.044	0.046	0.044667	0.000667	6.08537693	93.91462307	
2115	2.5	0.043	0.045	0.046	0.044667	0.000882	6.08537693	93.91462307	0.13 ± 0
PH5	1.25	0.042	0.038	0.047	0.042333	0.002603	5.767484105	94.23251589	
	0.625	0.042	0.044	0.045	0.043667	0.000882	5.949137148	94.05086285	

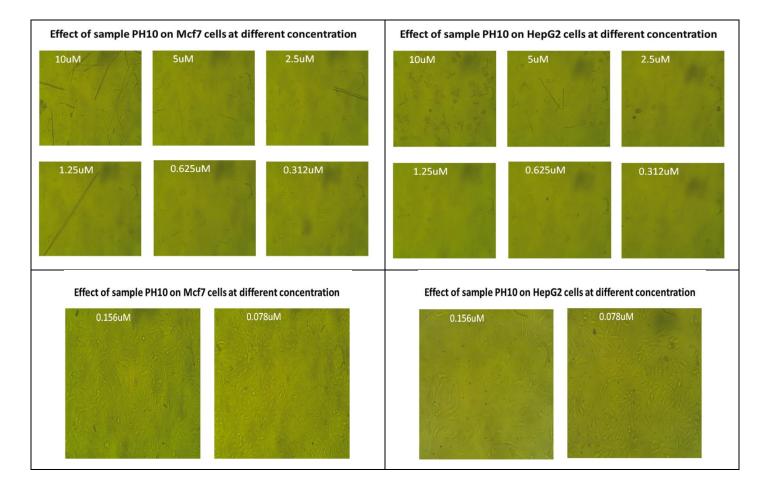

0.312	0.045	0.047	0.043	0.045	0.001155	6.130790191	93.86920981
0.156	0.236	0.22	0.208	0.221333	0.00811	30.15440509	69.84559491
0.078	0.538	0.512	0.529	0.526333	0.007623	71.7075386	28.2924614

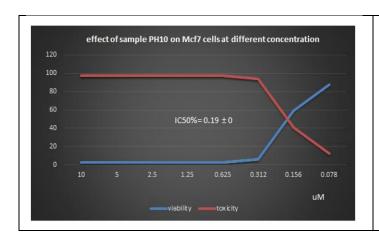


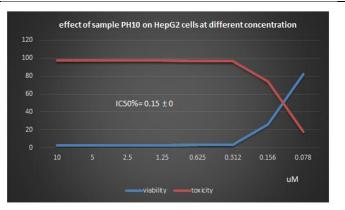
*** Cytotoxicity of PH-6 (compound 20b) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Mcf7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.05	0.05	0.05	0.05	4.91E-18	6.468305304	93.5316947	
	5	0.05	0.05	0.05	0.05	4.91E-18	6.468305304	93.5316947	
DUIG	2.5	0.05	0.05	0.05	0.05	4.91E-18	6.468305304	93.5316947	0.05 ±
PH6	1.25	0.036	0.043	0.044	0.041	0.002517	5.304010349	94.69598965	0.01
	0.625	0.032	0.039	0.04	0.037	0.002517	4.786545925	95.21345408	
	0.312	0.032	0.033	0.036	0.033667	0.001202	4.355325571	95.64467443	
	0.156	0.083	0.061	0.068	0.070667	0.006489	9.141871496	90.8581285	
	0.078	0.35	0.321	0.37	0.347	0.014224	44.89003881	55.10996119	

ID	uM		O.D		Mean	±SE	Viability %	Toxicity %	IC50
					O.D				± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.05	0.05	0.05	0.05	4.91E-18	6.811989101	93.1880109	
	5	0.05	0.05	0.05	0.05	4.91E-18	6.811989101	93.1880109	
DUG	2.5	0.05	0.05	0.05	0.05	4.91E-18	6.811989101	93.1880109	0.14 ± 0
PH6	1.25	0.038	0.047	0.045	0.043333	0.002728	5.903723887	94.09627611	
	0.625	0.037	0.042	0.04	0.039667	0.001453	5.40417802	94.59582198	
	0.312	0.038	0.035	0.039	0.037333	0.001202	5.086285195	94.9137148	
	0.156	0.195	0.208	0.224	0.209	0.008386	28.47411444	71.52588556	
	0.078	0.549	0.559	0.513	0.540333	0.013968	73.61489555	26.38510445	

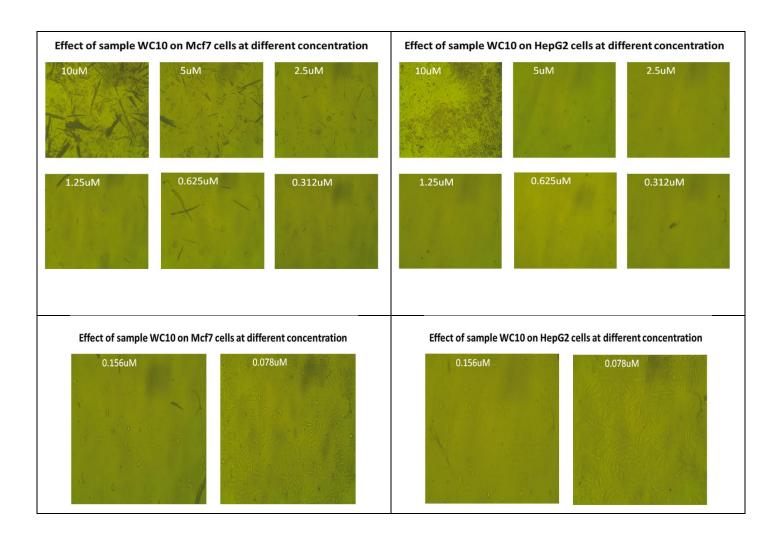


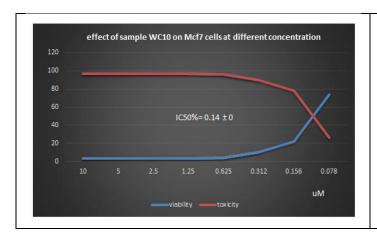


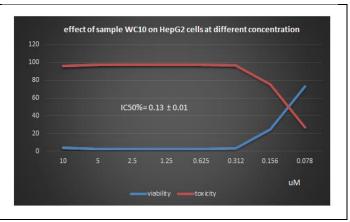

*** Cytotoxicity of PH-10 (compound 21a) against MCF-7 and HepG2

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Mcf7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.019	0.018	0.019	0.018667	0.000333	2.41483398	97.58516602	
	5	0.019	0.02	0.018	0.019	0.000577	2.457956016	97.54204398	
	2.5	0.019	0.022	0.021	0.020667	0.000882	2.673566192	97.32643381	0.19 ± 0
PH10	1.25	0.02	0.022	0.018	0.02	0.001155	2.587322122	97.41267788	
PHIO	0.625	0.02	0.018	0.023	0.020333	0.001453	2.630444157	97.36955584	
	0.312	0.046	0.052	0.049	0.049	0.001732	6.338939198	93.6610608	
	0.156	0.462	0.435	0.477	0.458	0.012288	59.24967658	40.75032342	
	0.078	0.67	0.699	0.664	0.677667	0.010806	87.66709789	12.33290211	

ID	uM		O.D		Mean	±SE	Viability %	Toxicity %	IC50
					O.D				± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.024	0.022	0.02	0.022	0.001155	2.997275204	97.0027248	
	5	0.025	0.021	0.02	0.022	0.001528	2.997275204	97.0027248	
	2.5	0.02	0.019	0.023	0.020667	0.001202	2.815622162	97.18437784	0.15 ± 0
PH10	1.25	0.02	0.021	0.019	0.02	0.000577	2.72479564	97.27520436	
FILLO	0.625	0.019	0.027	0.024	0.023333	0.002333	3.178928247	96.82107175	
	0.312	0.026	0.03	0.022	0.026	0.002309	3.542234332	96.45776567	
	0.156	0.2	0.175	0.195	0.19	0.007638	25.88555858	74.11444142	
	0.078	0.618	0.588	0.598	0.601333	0.008819	81.92552225	18.07447775	

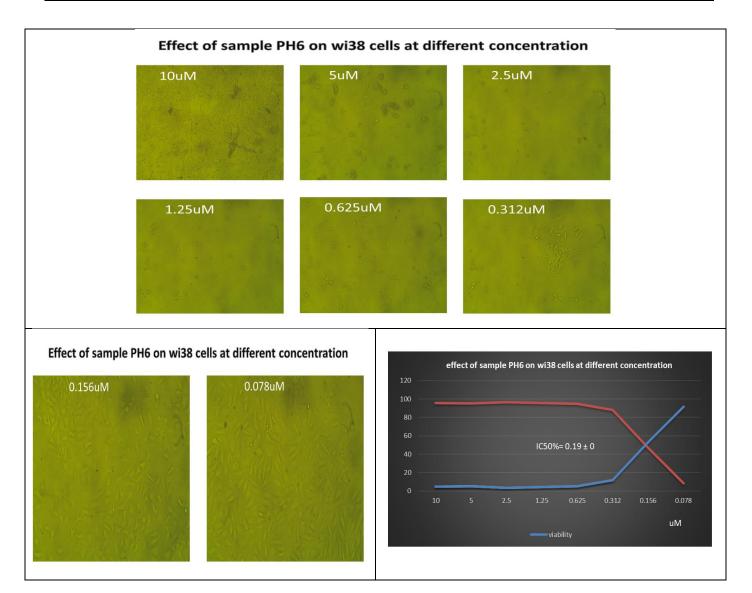



*** Cytotoxicity of WC-10 (compound 21b) against MCF-7 and HepG2 $\,$


ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Mcf7		0.772	0.768	0.779	0.773	0.003215	100	0	uM
	10	0.033	0.026	0.027	0.028667	0.002186	3.708495041	96.29150496	
	5	0.028	0.029	0.028	0.028333	0.000333	3.665373006	96.33462699	
111010	2.5	0.024	0.03	0.028	0.027333	0.001764	3.5360069	96.4639931	0.14 ± 0
WC10	1.25	0.024	0.025	0.029	0.026	0.001528	3.363518758	96.63648124	
	0.625	0.026	0.034	0.031	0.030333	0.002333	3.924105218	96.07589478	
	0.312	0.073	0.076	0.09	0.079667	0.005239	10.30616645	89.69383355	
	0.156	0.152	0.188	0.167	0.169	0.01044	21.86287193	78.13712807	
	0.078	0.563	0.559	0.582	0.568	0.007095	73.47994825	26.52005175	

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
HepG2		0.742	0.728	0.732	0.734	0.004163	100	0	uM
	10	0.03	0.03	0.029	0.029667	0.000333	4.0417802	95.9582198	
	5	0.019	0.018	0.02	0.019	0.000577	2.588555858	97.41144414	
14/640	2.5	0.023	0.019	0.021	0.021	0.001155	2.861035422	97.13896458	0.13 ±
WC10	1.25	0.02	0.019	0.018	0.019	0.000577	2.588555858	97.41144414	0.01

0.625	0.02	0.02	0.023	0.021	0.001	2.861035422	97.13896458	
0.312	0.019	0.026	0.024	0.023	0.002082	3.133514986	96.86648501	
0.156	0.182	0.166	0.194	0.180667	0.00811	24.61398728	75.38601272	
0.078	0.583	0.555	0.472	0.536667	0.033328	73.11534968	26.88465032	


S.2.2. Safety assay

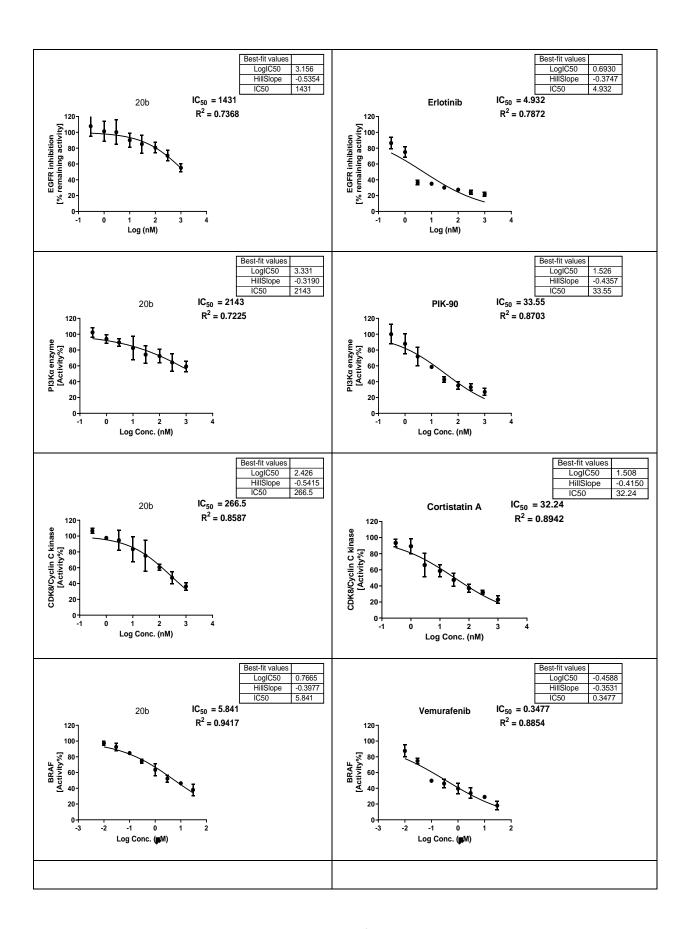
The safety profile of compound 20b was checked on against normal human lung cells (WI-38) to determine the treatments concentrations that do not depict toxic effects against the tested cells. A portion of $100.0~\mu l$ of $6\times10^4~cell/ml$ cells was seeded into each well of a 96-well plate and then the plates were incubated at $37^{\circ}C$ in a humidified 5.0% CO₂ incubator for 24 h. At the end of incubation period, the exhausted medium was replaced with $100.0~\mu l$ of different concentrations of the designated treatment (prepared in RPMI medium starting from 1.0~mM). The inoculated plates were incubated at the same growth conditions for another 24 h. At the end of incubation, cellular viability was assessed using MTS assay kit (Promega) according to the manual instruction.

*** Cytotoxicity of PH-6 (compound 20b) against normal human lung cells (WI-38)

ID	uM		O.D		Mean O.D	±SE	Viability %	Toxicity %	IC50 ± SD
Wi38		0.672	0.67	0.668	0.67	0.001155	100	0	uM
	10	0.031	0.033	0.026	0.03	0.002082	4.47761194	95.52238806	
	5	0.033	0.036	0.03	0.033	0.001732	4.925373134	95.07462687	
DUIG	2.5	0.021	0.022	0.027	0.023333	0.001856	3.482587065	96.51741294	0.19 ± 0
PH6	1.25	0.027	0.03	0.031	0.029333	0.001202	4.378109453	95.62189055	

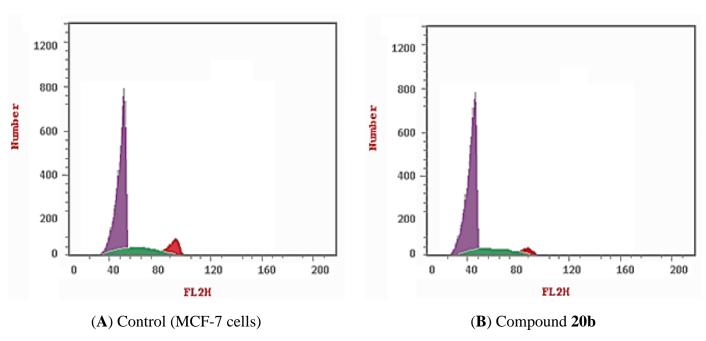
0.625	0.04	0.027	0.036	0.034333	0.003844	5.124378109	94.87562189
0.312	0.077	0.082	0.079	0.079333	0.001453	11.84079602	88.15920398
0.156	0.352	0.341	0.368	0.353667	0.007839	52.78606965	47.21393035
0.078	0.611	0.638	0.597	0.615333	0.012032	91.84079602	8.15920398

S.2.3. In vitro VEGFR-2 inhibition


Inhibitory activity of compound **20b** against VEGFR-2 was evaluated using Human VEGFR-2 ELISA kit (VEGFR2(KDR) Kinase Assay Kit Catalog # 40325)(BPS Bioscience, San Diego, USA). A specific antibody for VEGFR-2 was seeded on a 96-well plate and 100 μL of the standard solution or the tested compound was added, all were incubated at room temperature for 2.5 hours. Then washed, 100 μL of the prepared biotin antibody was added, then incubated at room

temperature for additional 1 hour. Washed, 100 μ L of streptavidin solution was added then incubated for 45 min. at room temperature. Washed again, 100 μ L of TMB Substrate reagent was added and incubated for 30 min. at room temperature. 50 μ L of the stop solution was added, then read at 450 nm immediately. The standard curve was drawn, concentrations on the X-axis and the absorbance on the Y-axis.

VEGFR2												
code	IC50	conc	log	%inh	T2	T1	ΔΤ	RFU2	RFU1	ΔRFU	slope	K.Activity
PH6		100	2	95.7	30	0	30	4.33	0	4.33	3.333	5.196
- :		10	1	87.7	30	0	30	12.29	0	12.29	3.333	14.748
		1	0	75.3	30	0	30	24.66	0	24.66	3.333	29.592
		0.1	-1	60.2	30	0	30	39.81	0	39.81	3.333	47.772
		0.01	-2	41.2	30	0	30	58.75	0	58.75	3.333	70.5
EC				0	30	0	30	100	0	100	3.333	120
Sorafenib		100	2	95.7	30	0	30	4.29	0	4.29	3.333	5.148
		10	1	89	30	0	30	11.03	0	11.03	3.333	13.236
u		1	0	75.8	30	0	30	24.16	0	24.16	3.333	28.992
15611		0.1	-1	57.4	30	0	30	42.55	0	42.55	3.333	51.06
		0.01	-2	36.4	30	0	30	63.62	0	63.62	3.333	76.344
EC				0	30	0	30	100	0	100	3.333	120


S.2.4. Kinase profiling test

- The in vitro inhibitory activity of compound **20b** against CDK8, PIK3α, BRAF & EGFR kinases enzyme activities was accomplished using Assay Kits (BPS Bioscience, USA) at different eight dilutions of 1000, 300, 100, 30, 10, 3, 1, and 0.3 nM prepared in DMSO.
- The activities of Kinases were observed by measuring chemiluminescence using BioTekTM Synergy2 Microplate Reader (BioTek, USA).
- Different standards were used.
- All samples and controls were verified in triplicates to calculate the concentration that caused 50% inhibition of the kinase activity.

S.2.5. Cell cycle analysis

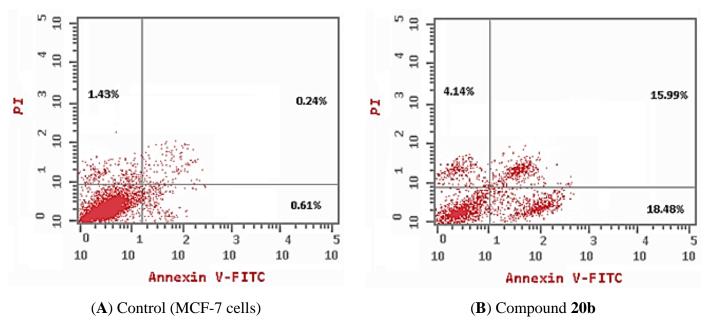

The MCF-7 cells were distributed at a density of 2.5×10^5 cells per flask on to the tissue culture flasks (T-75 flask; Nunc A/S) containing RPMI-1640 medium supplemented with 2 % FBS. After incubation for 72h with compound **20b** at a concentration of 0.06 μ M, the cells were washed thrice with ice-cold PBS buffer and fixed in 70 % cold ethyl alcohol at -20 °C overnight. The contents from each of the flask were then centrifuged at $12,000\times g$ for 20 min followed by washing and treatment with 100 μ l PBS containing 1 mM RNase A (Qiagen, Hilden, Germany). After incubation for 45 min at 37 °C, the cells were stained with 400 μ l propidium iodide (PI; 50 μ g/ml; Sigma-Aldrich) for 30 min. The cells were filtered through a 40- μ m nylon mesh (BD Biosciences, San Jose, CA, USA), and the DNA content was analyzed using Epics XL-MCLTM Flow Cytometer.

Fig. S1. The distribution of MCF-7 cells across the cell cycle phases was assessed using flow cytometry. Panel (A) represents the control condition, while panel (B) illustrates the influence of compound **20b** on the cell cycle distribution.

S.2.6. Apoptosis analysis

The annexin V externalization assay for apoptosis was performed using flow cytometry after treatment MCF-7 cells with compound **20b** (at concentrations of 0.06 μM) for 72 h as described in the vendor's protocol (BD Pharmingen, BD Biosciences, San Jose, USA). Briefly, untreated and cells treated with compound **20b**, from 60 to 70% confluent plates were trypsinized, washed in PBS and resuspended (1 × 10⁶ cells/ml) in binding buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl₂). A fraction (100 μl/1 × 10⁵ cells) of the cell suspension was incubated with 5 μl annexin V conjugated to FITC and 5 μl propidium iodide (PI) for 15 min at 25 °C in the dark. 400 μl of binding buffer was added to the suspension and apoptosis was measured immediately using a Becton Dickinson FACScan analyzer as described by Raza *et al.*, 2008. The apoptotic cells were estimated as the percentage of cells that stained positive for Annexin V-FITC while remaining impermeable to PI (AV+/PI-). This method also distinguished viable cells (AV-/PI-) and cells undergoing necrosis (AV+/PI+).

Fig. S2. Compound **20b** triggered apoptosis in MCF-7 cells. Panel (A) represents the control condition, while panel (B) illustrates the impact of compound **20b** on inducing apoptosis.

S.2.7. *In vitro* assay for caspase-8, caspase-9 using RT-PCR Tanique

The molecular anticancer mode of action of compound **20b** was investigated by screening their ability to affect the level of caspase-8 and caspase-9 using specific forward and reverse primers and RTq-PCR technique in MCF-7 cells (chosen as the most sensitive cancer cell line). After cellular treatment, MCF-7 cell line was cultured into 12 well plates (6×10³ cell/ml) for 24 hour at a concentration of 0.06 μM. After treatment, total RNA extraction was performed using RNA extraction kit (Qiagen, Germany). Then, 1 ug of the obtained RNA was used to synthesize cDNA using cDNA synthesis kit (Promega Corporation, Madison, USA) as recommended by the manufacturer. Simultaneously, GAPDH was used as internal control. The RTq-PCR was done using SYBR Green dye (QuantiTect SYBR Green PCR Kits) and Light Cycler fluorimeter (Bio-RAD S1000 Tm thermal cycler). The PCR cycling program was as follows: 95°C for 2 min, followed by 40 cycles of 95°C for 30 s, 55°C for 30 s, and 60°C for 45s, and finally 60°C for 5 min.

The sequences for primers used in quantitative Real Time Reverse-Transcriptase PCR (qRT-PCR)

	<u>Primers</u>
Casp8	: F 5'- AGAAGAGGGTCATCCTGGGAGA-3',
Casp8	: R 5'- TCAGGACTTCCTTCAAGGCTGC-3'.
Casp9	: F 5'- GTTTGAGGACCTTCGACCAGCT -3',
Casp9	: R 5'- CAACGTACCAGGAGCCACTCTT -3'.
GAPDH	: F 5'- GTCTCCTCTGACTTCAACAGCG-3'
GAPDH	: R 5'- ACCACCCTGTTGCTGTAGCCAA-3'

Sample		Gene Expression	
	Control cells	Test cells	FLD

MCF7

Ser	code	Conc	GAPDH	Casp8	ΔCTC	GAPDH	Casp8	ΔCTE	ΔΔ CT	2^ ΔΔCT
			НС	TC	TC-	HE	TE	TE-	ΔСΤΕ-	
			110	10	HC	1112	112	HE	ΔCTC	E=1.872
1	PH6		21.66	33.61	11.95	21.85	31.84	9.99	-1.96	3.4176
2	Control		21.66	33.61	11.95	21.66	33.61	11.95	0	1

MCF7

Ser	code	Conc	GAPDH	Casp9	ΔCTC	GAPDH	Casp9	ΔCTE	ΔΔ CT	2^ ΔΔCT
			HC	TC	TC-	HE	TE	TE-	ΔСΤΕ-	
			пс	16	HC-	1112	112	HE	ΔCTE-	E=1.872
					110			1112	Δαια	E-1.072
1	PH6		21.66	33.95	12.29	21.85	31.44	9.59	-2.7	5.4353
			01.77	00.05	10.00	01.77	00.05	12.20		2
2	Control		21.66	33.95	12.29	21.66	33.95	12.29	U	1

S3. In silico studies

S.3.1. Docking studies

Protein Preparation: The crystal structure of VEGFR-2 [PDB ID: 2OH4, resolution: 2.05 Å] was obtained from Protein Data Bank (https://www.rcsb.org). At first, the crystal structure of the VEGFR-2 complexed with the co-crystallized ligand was prepared by removing crystallographic water molecules. Only one chain was retained besides the co-crystallized ligand. The selected protein chain was protonated using the following setting. The used electrostatic functional form was GB/VI with a distance cut-off of 15 Å. The used value of the dielectric constant was 2 with an 80 dielectric constant of the used solvent. The used Van der Waals functional form was 800R3 with a distance cut-off of 10 Å. Then, the energy of the protein chain was minimized using Hamiltonian AM1 implanted in Molecular Operating Environment (MOE 2019 and MMFF94x (Merck molecular force field) for structural optimization. Next, the active site of the target protein was defined for ligand docking and redocking (in case of validation of docking protocol). The

active site of the protein was identified as the residues that fall within the 5 Å distance from the perimeter of the co-crystallized ligand.

Ligand Preparation: 2D structures of the synthesized compounds and the standard compound, sorafenib were drawn using ChemBioDraw Ultra 14.0 and saved in MDL-SD file format. The 3D structures of the ligands were protonated, and the structures were optimized by energy minimization using MM2 force-field and 10000 iteration steps of 2 fs. The conformationally optimized ligands were used for docking studies.

Docking Setup and Validation of Docking Protocol: The protein-ligand docking studies were carried out using MOE version 2019. Validation of the docking protocol was carried out by redocking the co-crystallized reference ligand against the isolated pocket of VEGFR-2. The docking protocol was validated by comparing the heavy atoms RMSD value of the re-docked ligand pose with the corresponding co-crystallized reference ligand structure.

The docking setup for the tested compounds was established according to the protocol followed in the validation step. For each docking run, 30 docked solutions were generated using ASE for scoring function and rigid receptor for refinement. The pose with ideal binding mode was selected for further investigations. The docking results were visualized using Discovery Studio (DS) 4.0. Analysis of the docking results was carried out by comparing the interactions and docking score obtained for the docked ligands with that of the re-docked reference molecule.

S.3.2. MD simulations

To assess the robustness of the VEGFR-2_22 complex and to compare the structure of the apo and holo protein, a 100 ns classical unbiased MD simulation was run in GROMACS 2021. We utilized the solution builder module of the CHARMM-GUI server to generate the input files. Using the transferable intermolecular potential 3 points (TIP3P) water model, we solvated and centered the apo protein and the docked complex in a cube of 8.3 nm in length with 1 nm of padding, and then neutralized the system with NaCl ions at a concentration of 0.154 M. The VEGFR-2 protein's amino acid parameters, the TIP3P water model, and the neutralizing ions were all obtained with the help of the CHARMM36m force field. Parameters for compound 20b were calculated with the help of the CHARMM general force field (CGenFF).

We utilized GROMACS 2021 to perform the dynamics and used periodic boundary conditions

(PBCs) in all three spatial dimensions. The potential energy of the system was minimized so that atomic collisions may be avoided. During the equilibration process, the temperature was brought to 310 K and the pressure was brought to 1 atm. In detail, the minimizing step was set to be converged at 100,000 minimization steps or when the maximum force on any atom was 100 KJ.mol⁻¹.nm⁻¹. By using the Velocity Rescale technique, we were able to achieve thermal equilibrium in a canonical (NVT) ensemble. For pressure equilibration, we employed a Berendsen barostat with the isothermal-isobaric (NPT) ensemble. The production run in an NPT ensemble was started for 100 ns with the Nose-Hoover thermostat at 310 degrees Kelvin and the Parrinello-Rahman barostat set at 1 atm. The LINear Constraint Solver (LINCS) was used to impose length constraints on the hydrogen-bonded atoms . We utilized Particle Mesh Ewald (PME) to calculate the electrostatics with a threshold of 1.2 nm. By using a time step of 1 femtosecond during equilibration and 2 femtoseconds during production, the Newtonian equations of motion were integrated using the leap-frog algorithm. One thousand frames were captured at 0.1 ns intervals throughout the simulation. We centered the protein in the middle of the simulation box and made it whole again using the triconv command and then analyzed it using VMD TK scripts. VEGFR-2 and 22 root mean square deviation (RMSD) values were determined. Root mean square fluctuation (RMSF), the radius of gyration (RoG), the ligand-protein center of mass separation, and the number of hydrogen bonds were all computed to see their dynamic behavior with time.

MM-GBSA

When calculating the ligand's binding energy, we utilized the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method implemented in the gmx_MMPBSA program. In addition, decomposition analysis was carried out to calculate the binding energy contributed by each amino acid within 1 nm of the ligand. An ionic strength of 0.154 M and a solvation method (igb) value of 5 were selected. The dielectric constant was set to 1.0 inside and 78.5 outside the structure. The MM-GBSA approach is shown in Equation 1.

$$\Delta G = \langle Gcomplex - (Greceptor + Gligand) \rangle$$

Equation 1

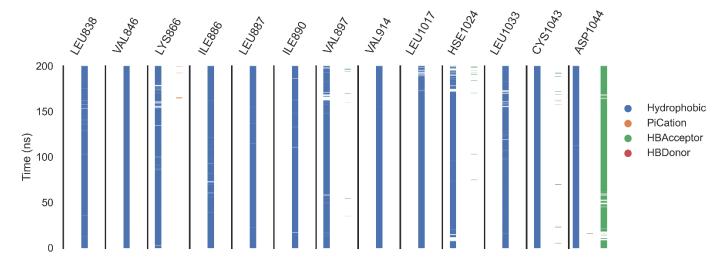
Where <> represents the average of the enclosed free energies of complex, receptor, and ligand over the frames used in the calculation. In our approach, we used the whole trajectory (a total of 1000 frames). Different energy terms can be calculated according to Equations 2 to 6 as follows:

 $\Delta H = \Delta E gas + \Delta E sol$ Equation 3 $\Delta E gas = \Delta E ele + \Delta E v dW$ Equation 4 $\Delta E solv = EGB + ESA$ Equation 5 $ESA = \gamma.SASA$ Equation 6

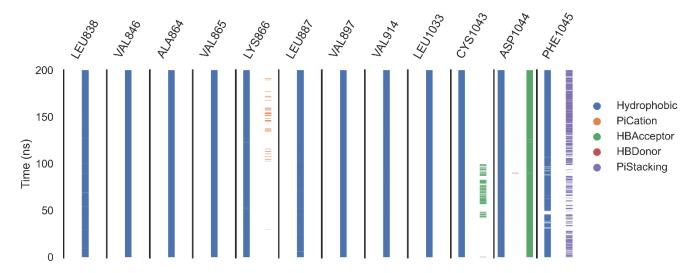
Equation 2

Where:

 Δ Gbinding = Δ H - T Δ S


 ΔH is the enthalpy which can be calculated from gas-phase energy (E_{gas}) and solvation-free energy (E_{sol}). -T ΔS is the entropy contribution to the free binding energy. E_{gas} is composed of electrostatic and van der Waals terms; E_{ele} , E_{vdW} , respectively. E_{sol} can be calculated from the polar solvation energy (E_{GB}) and nonpolar solvation energy (E_{SA}) which is estimated from the solvent-accessible surface area.

ProLIF Analysis


we monitored which amino acids interacted with the ligand and how often using the python package Protein-Ligand Interaction Fingerprints (ProLIF). We next used TTclust to cluster the trajectories, and the obtained representative frames were used with the Protein-Ligand interaction profiler (PLIP) to extract the interactions as 3D conformations.

The ProLIF technique was employed to identify amino acids engaged in ligand interactions and their occurrence frequency. For sorafenib, 13 amino acids were detected with hydrophobic binding frequencies surpassing 80%. Specific amino acids crucial for compound interactions were pinpointed, including Leu838 (91.2%), Lys866 (87.9%), Ile886 (92.9%), Val846 (98.6%), Leu887 (95.1%), Val897 (88.9%), Val914 (99.7%), Ile890 (95.2%), Leu1017 (95.4%), Leu1033 (91%), His1024 (86.6%), Cys1043 (99.8%), and Asp1044 (99.3%). These high percentages underscore their pivotal role in interactions and highlight their significance in binding within the complex (**Fig. S3**). Moreover, Asp1044 exhibited an 88.2% hydrogen bond rate. On the other hand, compound 20b interacted with 12 amino acids predominantly through hydrophobic interactions, each with a frequency of at least 80% (**Fig. S4**). These amino acids include Leu838 (95.7%), Val846 (99.9%), Ala864 (100%), Val865 (99.3%), Lys866 (97.9%), Leu887 (96%), Val897

(100%), Val914 (99.9%), Leu1033 (99.4%), Cys1043 (99.9%), Asp1044 (99.9%), and Phe1045 (89.2%). Notably, Asp1044 also showed a higher rate of hydrogen bond formation (97.1%) compared to sorafenib. Nine of these 12 amino acids were common with sorafenib, indicating a similar mode of interaction. Furthermore, six of these amino acids exhibited stronger contributions compared to sorafenib, as depicted in **Fig. S3**.

Fig. S3. a comprehensive depiction of the amino acids, the interactions' nature, and their frequency throughout the entire simulation period of VEGFR-2_sorafenib complex, as analyzed through the ProLIF Python library.

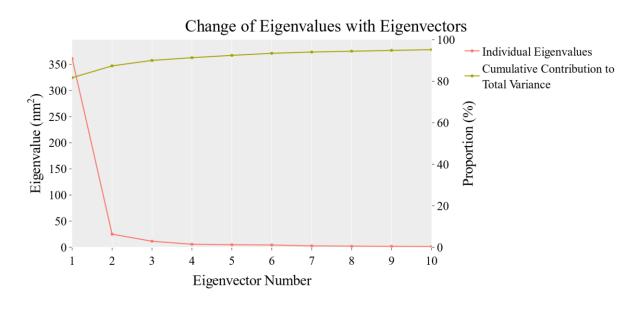
Fig. S4. a comprehensive depiction of the amino acids, the interactions' nature, and their frequency throughout the entire simulation period of VEGFR-2_20b complex, as analyzed through the ProLIF Python library.

Principal Component Analysis:

When the mass-weighted covariance matrix (C) of the positional fluctuations of a subset of atoms in a protein is analyzed using a Principal Component Analysis (PCA), the presence of coordinated motion at large amplitudes in MD trajectories becomes apparent. The alpha carbon atoms of amino acids Glu826:Leu1161 were used in the PCA analysis as a subset of atoms to detect the coordinated motion (15). After equilibration, the protein's configuration in each trajectory was used as the reference structure while performing the analyses that used a single trajectory. In contrast, the last frame from the equilibration of the apo system was chosen as the reference for the concatenated trajectory analyses. The PCA technique, in particular, uses the information revealed by diagonalizing the C matrix to determine the eigenvectors and eigenvalues that define the atomic motions' direction and amplitude. For any given system, the first PC displays the largest motion, whereas subsequent PCs show smaller motions. We were able to analyze the C matrix in GROMACS by utilizing the gmx covar command to diagonalize the matrix and the gmx anaeig command to complete the analysis.

Essential subspace size was determined based on the cumulative eigenvalues with respect to the number of eigenvectors used, where the variance maintained by the selected eigenvectors was shown. Additionally, the scree plot was made by plotting the eigenvalue of each eigenvector against its index number. Moreover, it is well known that the distribution of the initial eigenvectors does not follow a Gaussian distribution. Therefore, this was used as an additional criterion in determining the number of eigenvectors of the essential subspace.

For each principal component (pi) of the covariance matrix, the cosine content (ci) may be calculated from the C matrix; this absolute value goes from 0 (no cosine) to 1 (perfect cosine). The equation of cosine content is as follows:


$$c_i = \frac{2}{T} \left(\int \cos(i\pi t \, p_i(t) \, dt)^2 \left(\int p_i^2(t) \, dt \right)^{-1} \right)$$

Where T is the time of the simulation. Insufficient sampling has been associated with abnormally high ci values, which indicate random motion. The large-scale behavior of proteins is similar to diffusion when the cosine content of the first few PCs is close to 1. All trajectories' cosine contents

were calculated by analyzing the first 10 PCs.

Principal Component Analysis (PCA) was employed to detect coordinated movements. The determination of the reduced subspace size was guided by several criteria detailed in the methods section, including the examination of the scree plot, distribution of eigenvectors, and cumulative variance captured by additional eigenvectors. The scree plot clearly shows a change in slope starting from the 2nd principal component (PC). The first eigenvector alone explained nearly 81% of the total variance, while the combined contribution of the first three eigenvectors accounted for approximately 90% of the overall variance (**Fig. S5**). It's noteworthy that the distribution of the first three PCs deviated from a Gaussian pattern (**Fig. S6**). Therefore, it was decided to utilize the top three eigenvectors as representatives of the fundamental subspace.

To assess the level of randomness in the behavior of the initial ten eigenvectors, the cosine content was computed for both systems (**Fig. S7**). The analysis revealed that, with the exception of the second principal component in the VEGFR-2_20b system and the sixth PC in VEGFR-2_sorafenib, the cosine content of the first 10 eigenvectors remained below 0.2 in both systems. Moreover, the Root Mean Square Inner Product (RMSIP) indicated a limited overlap between the two subspaces, particularly for the first three eigenvectors, with a value of 18%. Additionally, the RMSIP analysis demonstrated only a 27% similarity between the C matrices of the two systems, suggesting distinctive sampling characteristics for each system.

Page 28 of 37

Fig. S5. the variation in eigenvalues as the number of eigenvectors increases (blue line). Furthermore, it illustrates the cumulative retained variance in the eigenvectors (red line).

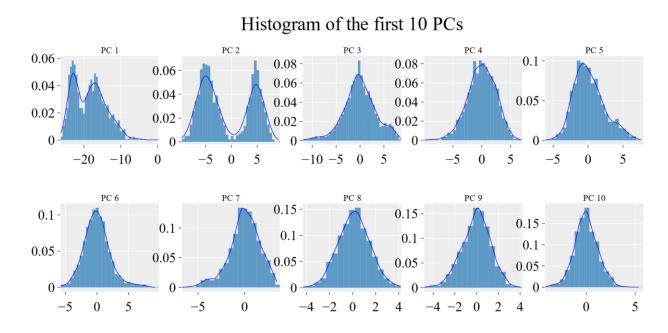


Fig. S6. The arrangement of the initial ten eigenvectors

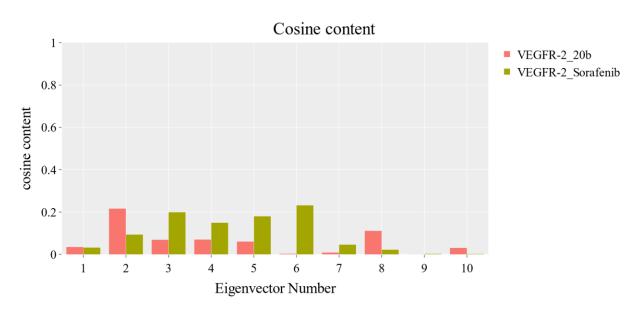
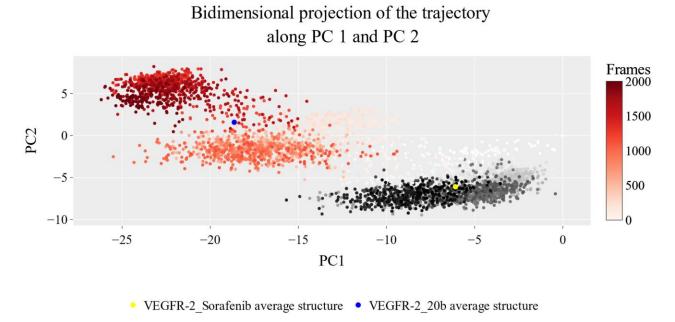



Fig. S7. Cosine content's Values of the first ten eigenvectors.

The results obtained from projecting each trajectory onto the first three eigenvectors of the new C matrix are presented in **Fig. S8-S10**. In these graphs, the larger dot represents the average structure of the respective trajectory. Fig. S8 illustrates the projection onto the first two eigenvectors, revealing distinct average structures for each trajectory. Moreover, the frames demonstrate separate sampling, with only a small amount of overlap observed at the initial stages of the simulation (pale red and white dots). Furthermore, the sampling patterns for the reference trajectory exhibit clustered frames indicating similarity within the sampled frames. Conversely, VEGFR-2_20b shows two clusters indicating two sampled regions (orange dots and dark red dots). Similarly, Fig. S9 displays a similar pattern to Fig. S8, with different average structures and distinct clustered sampling. Finally, Fig. S10 illustrates the projection onto the second and third eigenvectors, indicating that the two trajectories differ from each other and exhibit only slight overlap in the early frames. Notably, in the VEGFR-2_20b complex frames, two clusters are observed (similar to PC1/PC2 projection), with one cluster (orange dots) being in proximity to the region of VEGFR-2_sorafenib, while the other cluster is located further away. This suggests the sampling of a new region after spending some time near the initial structure. In the visualization, small white-to-black dots represent frames from the VEGFR-2 in the VEGFR-2_sorafenib simulation, while small white-to-red dots represent frames from the VEGFR-2 in the VEGFR-2 **20b** simulation.

Fig. S8. Each trajectory is projected onto the first two eigenvectors.

Bidimensional projection of the trajectory along PC 1 and PC 3

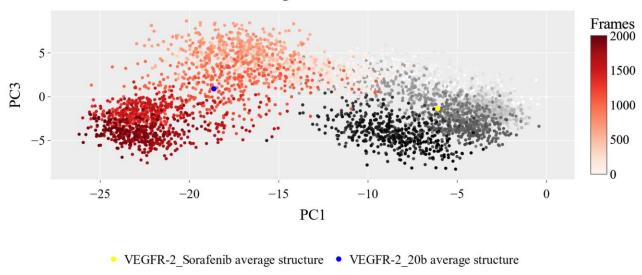
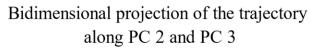



Fig. S9. Each trajectory is projected onto the first and third eigenvectors.

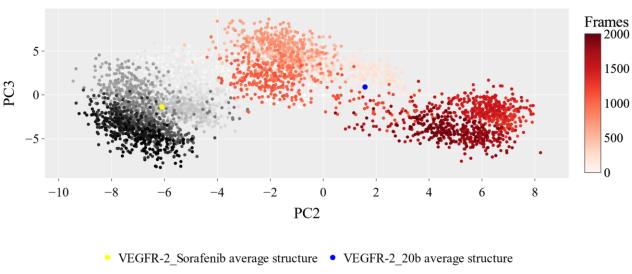
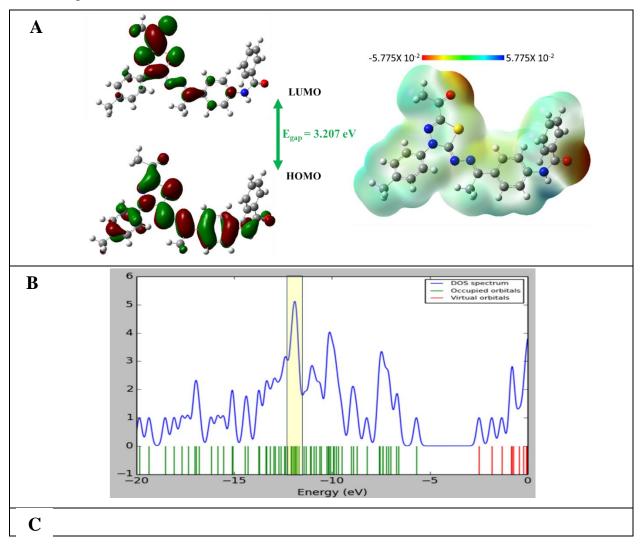


Fig. S10. Each trajectory is projected onto the second and third eigenvectors.


S.3.4. Density Function Theory (DFT) calculations

The calculations have been done using DFT/B3LYP/6-31+G (d, p) theory level utilizing Gaussian 09 software with the aid of various software including GaussSum, Multiwfn, AIMALL and Gauss View 5. Mulliken charge analysis as well as TDOS; Total density of states, MEP; molecular electrostatic potential, QTAIM; quantum theory of atoms in molecules, analyses have performed. FMO; frontiers molecular orbital analysis and reactivity descriptors including global softness(σ), global hardness(η), chemical potential(μ), electron affinity (EA), electronegativity (χ), electrophilicity index(ω), ionization potential (IP), and energy change (Δ E) have been determined according to the following equations:

$$IP = -E_{\rm HOMO}$$
 $EA = -E_{\rm LUMO}$
 $\mu = (IP + EA)/2$
 $\eta = (IP - EA)$
 $\chi = -\mu$
 $\omega = \mu^2/(2 \eta)$
 $\sigma = 1/\eta$
 $\Delta N = -(\mu/\eta)$
 $\Delta E = -\omega$
 $E_{\rm gap} = E_{\rm LUMO} - E_{\rm HOMO}$

The HOMO and LUMO (frontier molecular orbitals) are electronic characteristics that are linked to chemical reactivity. Their energies have been determined to be -5.684 and -2.476 eV, respectively. This results in values of the ionization potential (IP), electron affinity (EA), chemical potential (μ), hardness (η), and electrophilicity (ω). The wave function distribution of the HOMO and LUMO is found over the conjugated π -system, suggesting a π - π intramolecular charge transfer due to the lowest energy gap (E_{gap}) of 3.207 eV, **Fig. S11.A**. Such a result indicates easier excitations of electrons from HOMO to LUMO which imply potential chemical reactivity [49]. The electron density map over electrostatic potential in **Fig. S11.A** shows that the structure is composed of several charged (negative and positive) areas. The oxygen atoms in the carbonyl groups belong to the negatively charged areas. In contrast, the carbonyl carbon and hydrogen atoms are the most positively charged atomic sites.

To gain deep insights into the electronic structure and then the chemical behavior of **20b**, the total density of states (TDOs) has been analyzed and demonstrated in **Fig. S11.B**. The highest peak of electronic density (in yellow color) defines the orbitals that are involved in bonding with the target. The narrow HOMO-LUMO gap in energy suggests easier excitation of electrons and possibly increased reactivity [50]. The topology analysis of the electron density (ρ) in the quantum theory of atoms in molecule (QTAIM) has been performed based on the obtained ρ from the DFT method. QTAIM gains a comprehensive insight into the electronic structure, bonding nature and reactivity of a molecule. In QTAIM, bond critical points (BCP) and bond paths are identified based on the gradient of ρ . In addition, the Laplacian of electron density ($\nabla^2 \rho$), total electron energy density (H(r)), kinetic electron energy density (G(r)) and potential electron energy density (V(r)) at each BCP are determined. **Fig. S11.C** demonstrated that three bonds are generated within **20b**.

Fig. S11. The FMO and energy gap, the ESP (A), the TDOS spectrum (B), and the QTAIM maps (C) for compound **20b**. These results were obtained using B3LYP/6-31+G(d,p).

The results in **Table S1** show that all bonds within the molecule are covalent while the newly generated bonds are electrostatic in nature which provide the molecule with stability.

Table S1. The QTAIM parameters (a.u.) at bond critical points (BCPs) of 20b.

BCP #	Atoms	(ρ)	(∇2ρ)	K(r)	G(r)	V(r)	H(r)
1	C1 - C2	0.26569	-0.66472	0.227058	0.060877	-0.28794	-0.22706
2	C1 - O3	0.401135	-0.07824	0.692595	0.673035	-1.36563	-0.6926
3	C1 - N4	0.307836	-0.98721	0.45509	0.208287	-0.66338	-0.45509
4	C6 - C7	0.315624	-0.86494	0.318946	0.102711	-0.42166	-0.31895
5	C7 - C8	0.304828	-0.81305	0.296259	0.092995	-0.38925	-0.29626
6	C5 - C6	0.307943	-0.83457	0.304689	0.096045	-0.40073	-0.30469
7	N4 - H34	0.341404	-1.81804	0.506558	0.052049	-0.55861	-0.50656
8	N4 - C5	0.285186	-0.86617	0.395392	0.178851	-0.57424	-0.39539
9	C5 - C10	0.311734	-0.85085	0.311043	0.09833	-0.40937	-0.31104
10	C8 - C9	0.306803	-0.81898	0.300277	0.095532	-0.39581	-0.30028
11	C9 - C10	0.312384	-0.85008	0.312289	0.099768	-0.41206	-0.31229
12	C8 - C11	0.270685	-0.67357	0.233728	0.065336	-0.29906	-0.23373
13	C11 - N13	0.370388	-0.80275	0.638647	0.43796	-1.07661	-0.63865
14	C11 - C12	0.254597	-0.60216	0.211093	0.060553	-0.27165	-0.21109
15	C12 - H39	0.283535	-1.01715	0.296139	0.041853	-0.33799	-0.29614
16	N13 - N14	0.342813	-0.63817	0.331307	0.171764	-0.50307	-0.33131
17	S15 - C16	0.195021	-0.35677	0.148677	0.059485	-0.20816	-0.14868
18	N14 - H39	0.016938	0.074658	-0.00337	0.015297	-0.01193	0.003368

19	N14 - C16	0.386609	-1.19354	0.664567	0.366183	-1.03075	-0.66457
20	N17 - C20	0.271242	-0.72997	0.383585	0.201093	-0.58468	-0.38359
21	C16 - N17	0.301339	-0.93736	0.429118	0.194778	-0.6239	-0.42912
22	N18 - C19	0.3669	-0.65461	0.629766	0.466114	-1.09588	-0.62977
23	N17 - N18	0.364394	-0.69898	0.36572	0.190976	-0.5567	-0.36572
24	S15 - C19	0.199683	-0.37223	0.155012	0.061955	-0.21697	-0.15501
25	C20 - C21	0.311154	-0.84774	0.311198	0.099263	-0.41046	-0.3112
26	C21 - C24	0.312567	-0.85216	0.31302	0.09998	-0.413	-0.31302
27	C20 - C23	0.311644	-0.85191	0.312724	0.099745	-0.41247	-0.31272
28	C22 - C24	0.309513	-0.83387	0.305656	0.097188	-0.40284	-0.30566
29	N14 - H43	0.012326	0.04491	-0.0019	0.009333	-0.00744	0.001895
30	C22 - C25	0.310062	-0.83617	0.306702	0.09766	-0.40436	-0.3067
31	C24 - H44	0.283933	-1.01628	0.295652	0.041583	-0.33723	-0.29565
32	C23 - C25	0.311698	-0.84757	0.311184	0.099292	-0.41048	-0.31119
33	C19 - C26	0.272612	-0.69319	0.238605	0.065306	-0.30391	-0.23861
34	C26 - C54	0.257637	-0.62639	0.21709	0.060491	-0.27758	-0.21709
35	C26 - O27	0.401319	0.128282	0.68371	0.715781	-1.39949	-0.68371
36	C2 - H35	0.007972	0.028906	-0.00161	0.00562	-0.00401	0.001607
37	C2 - C28	0.308749	-0.8308	0.30444	0.096741	-0.40118	-0.30444
38	C28 - C29	0.313249	-0.85851	0.313653	0.099027	-0.41268	-0.31365
39	C29 - C30	0.31134	-0.85021	0.309849	0.097297	-0.40715	-0.30985
40	C2 - C32	0.307424	-0.81996	0.302336	0.097347	-0.39968	-0.30234
41	C30 - C31	0.311637	-0.85137	0.310415	0.097572	-0.40799	-0.31041
42	C31 - C32	0.312385	-0.85297	0.312165	0.098923	-0.41109	-0.31217
43	C22 - C33	0.253314	-0.60043	0.20794	0.057832	-0.26577	-0.20794
44	C33 - H53	0.276822	-0.94922	0.282194	0.04489	-0.32709	-0.2822
45	C6 - H35	0.286709	-1.04296	0.301562	0.040822	-0.34238	-0.30156
46	C7 - H36	0.2893	-1.07597	0.307201	0.038209	-0.34541	-0.3072
47	C10 - H38	0.283245	-1.00992	0.294717	0.042236	-0.33695	-0.29472
48	C9 - H37	0.286509	-1.035	0.300682	0.041932	-0.34261	-0.30068
49	C12 - H40	0.274437	-0.93097	0.278644	0.045903	-0.32455	-0.27864
50	C12 - H41	0.27294	-0.91933	0.276075	0.046242	-0.32232	-0.27608
51	C21 - H42	0.287081	-1.05044	0.302678		-0.34275	-0.30268
52	C23 - H43	0.289631	-1.07738	0.308385		-0.34743	-0.30838
53	C25 - H45	0.283987	-1.01647	0.295735		-0.33735	-0.29574
54	C28 - H46	0.287509	-1.05879	0.303235	0.038539	-0.34177	-0.30324
55	C29 - H47	0.285076	-1.02896	0.297915	0.040675	-0.33859	-0.29792
56	C30 - H48	0.285212	-1.03066	0.298092		-0.33852	-0.29809
57	C31 - H49	0.284988	-1.02766	0.297775	0.040859	-0.33863	-0.29777
58	C32 - H50	0.286819	-1.04349	0.301365	0.040493	-0.34186	-0.30137
59	C33 - H51	0.276638	-0.94792	0.281896		-0.32681	-0.2819
60	C33 - H52	0.273723	-0.92686	0.276852			-0.27685
61	C54 - H55	0.273911	-0.93559	0.278519	0.044621		-0.27852
J-1	55 / 1155	5.2,5511	3.33333	5.2,5515	0.011021	3.32317	5.2,552

62	C54 - H57	0.280521	-0.9905	0.289696	0.04207	-0.33177	-0.2897
63	C54 - H56	0.276034	-0.9537	0.282217	0.043792	-0.32601	-0.28222

S.3.5. ADMET studies

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the compounds were determined using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the tested compounds were prepared and minimized according to the preparation of small molecule protocol.

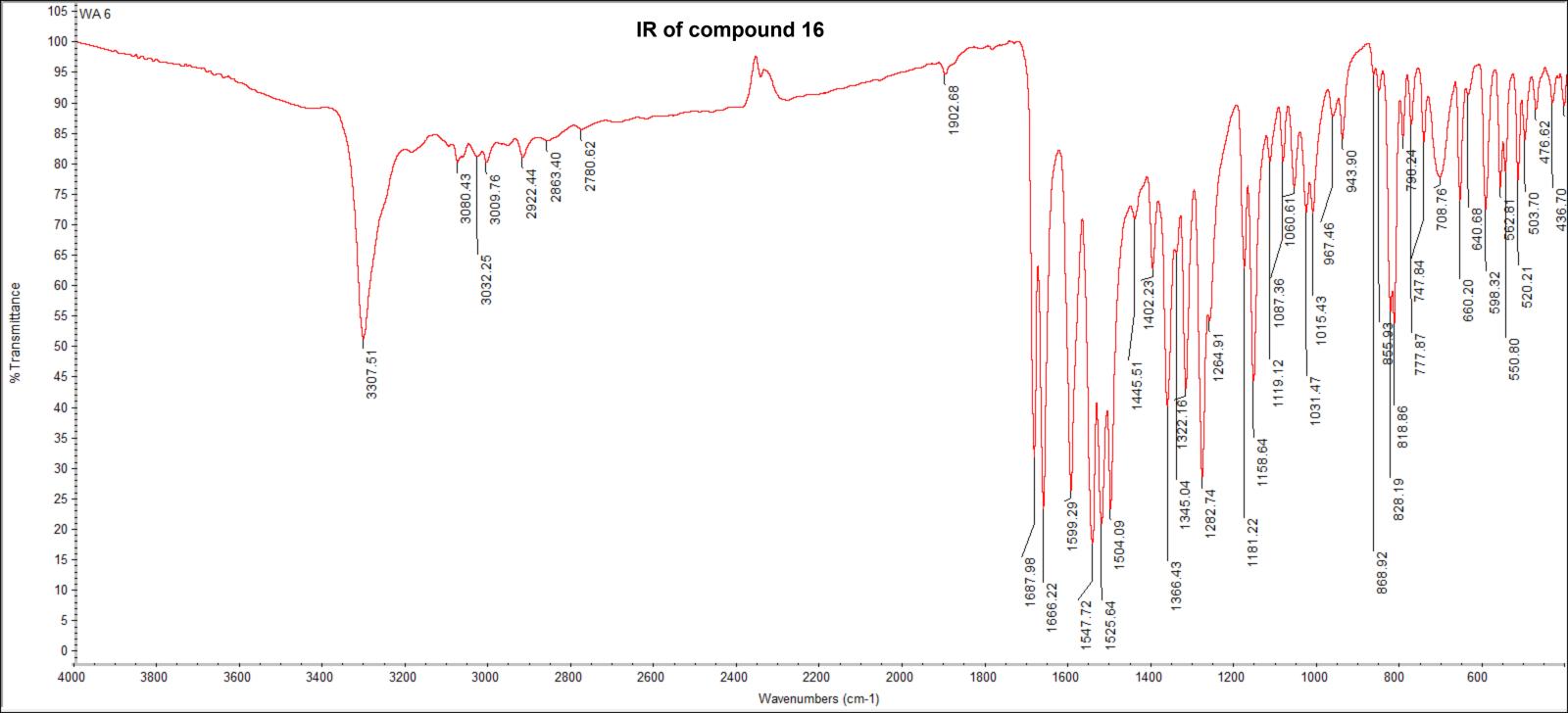
• Preparation of the tested compounds:

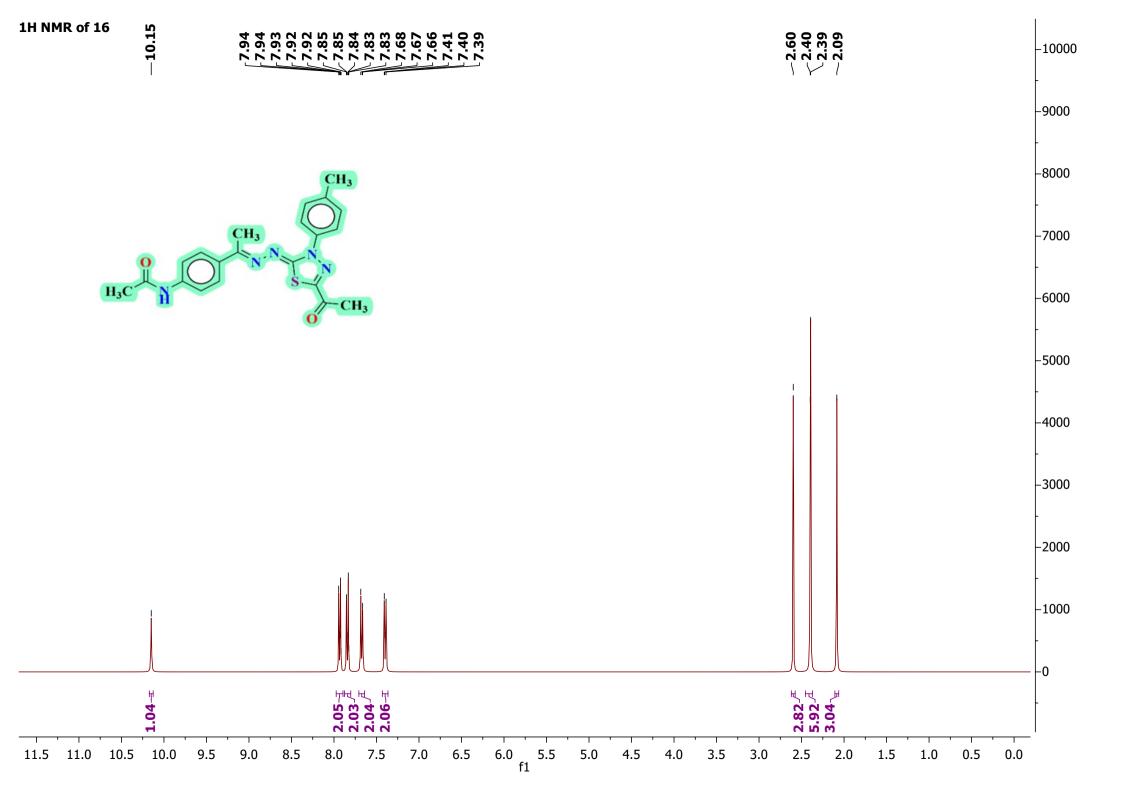
In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

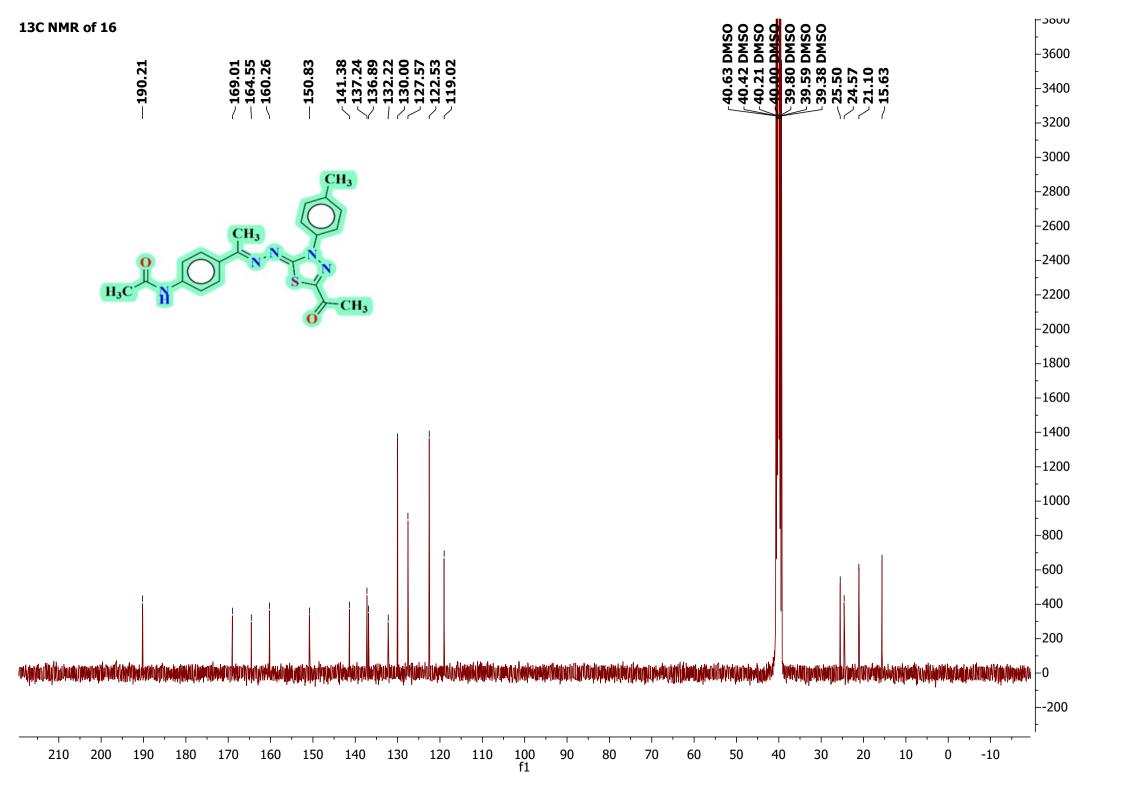
• Running of ADMET protocol

In this protocol, the small molecules panel was utilized with the activation of the ADMET descriptors option. Then, we selected the prepared compounds as the input ligands. Further, all the ADMET parameters (aqueous solubility, Blood brain barrier, intestinal absorption, CYP2D6, and plasma protein binding) were selected. Then, the output of the running protocol was visualized to give the ADMET chart.

S.3.6 Toxicity studies

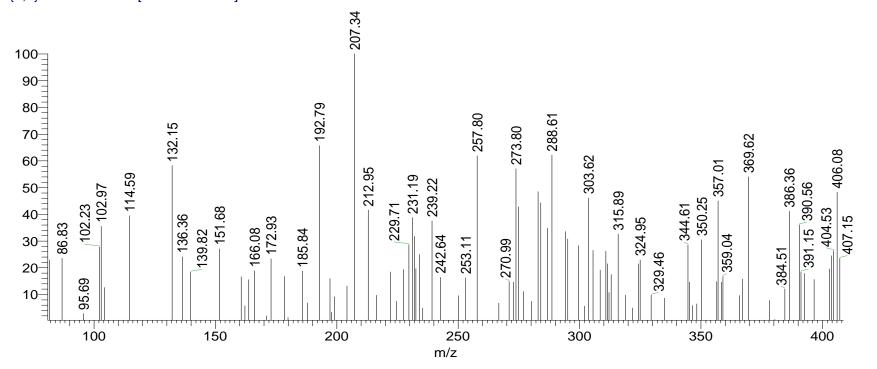

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol.

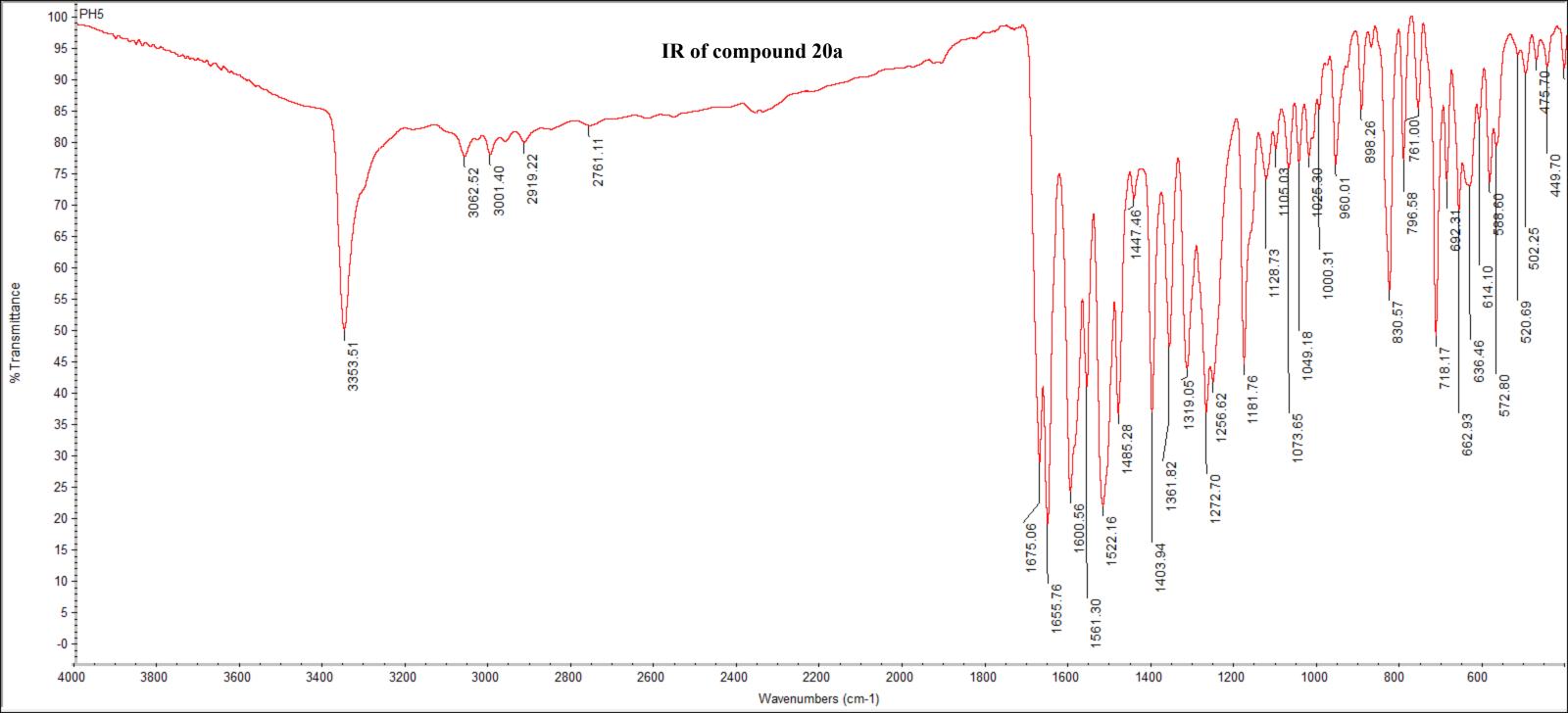

Preparation of the tested compounds:

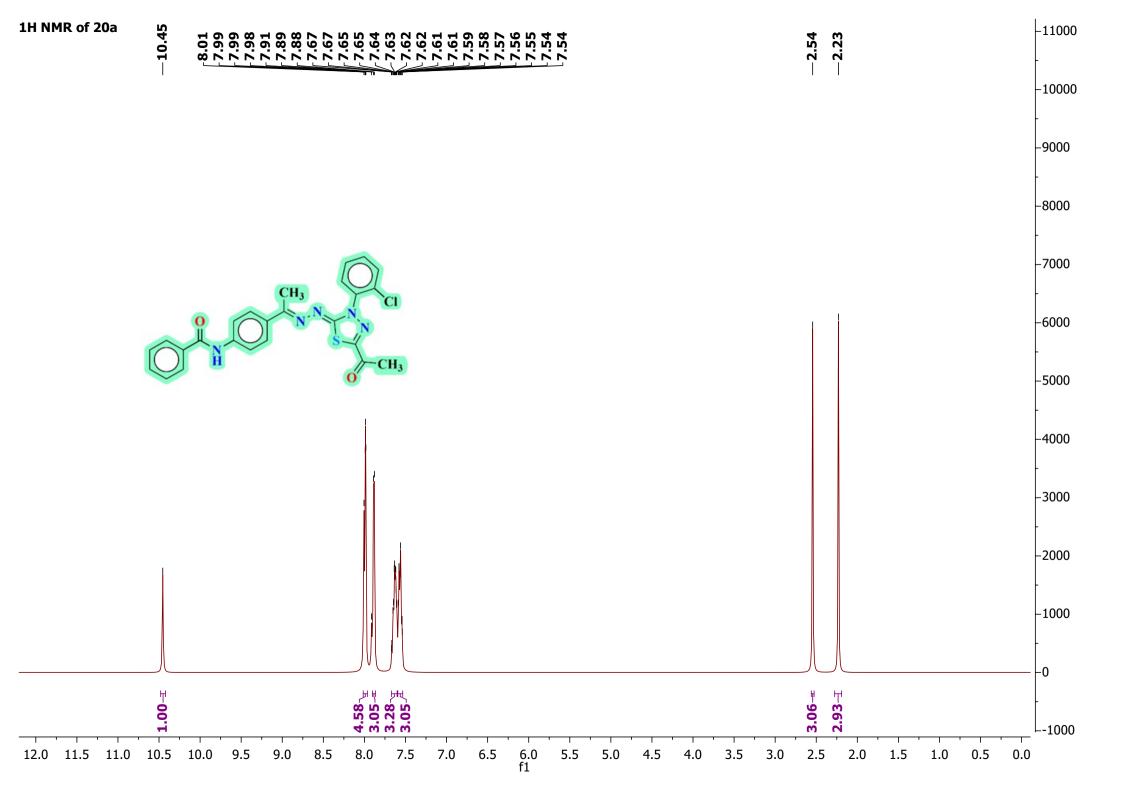

In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

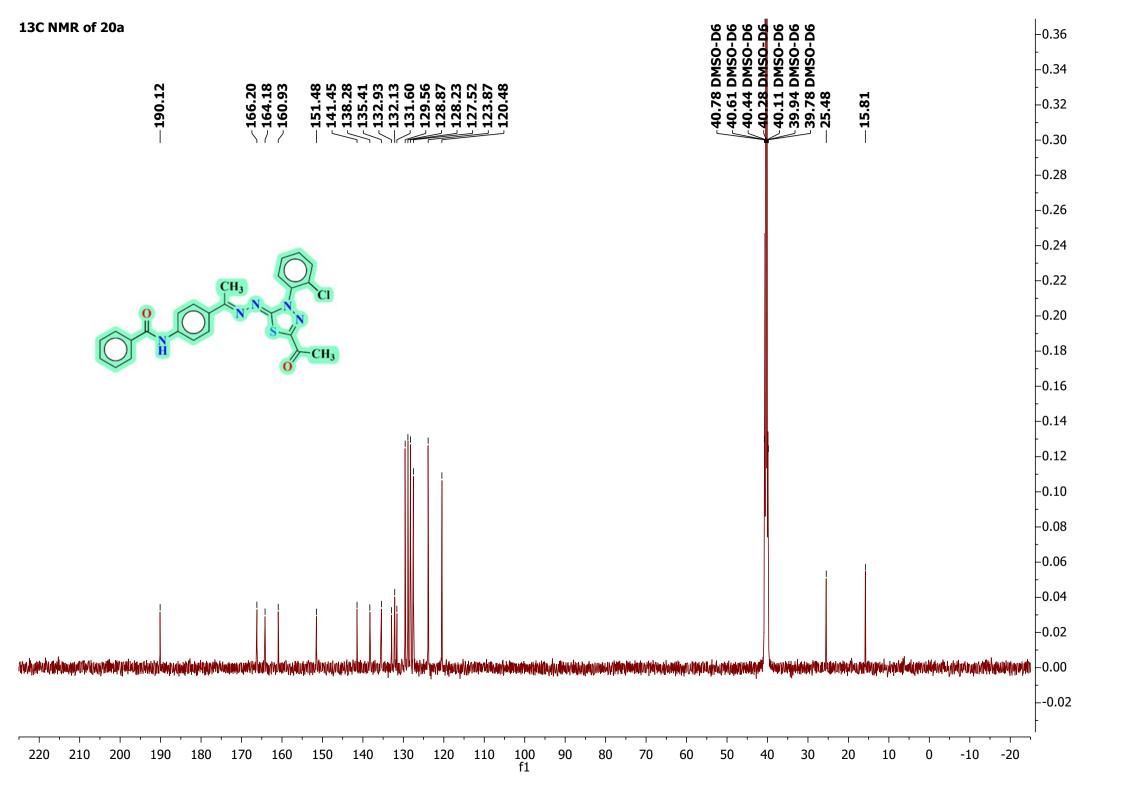
• Running of Toxicity protocol

In this protocol, the small molecules panel was utilized with the activation of the toxicity prediction (extensible) option. Then, we selected the prepared compounds as the input ligands. Further, the different toxicity models were selected from the model panel. The similarity search task was activated to be true. The detailed report task was switched on as a PDF file. Then, the output of the running protocol was visualized to give the toxicity PDF report.

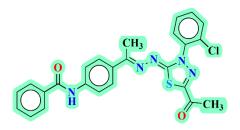


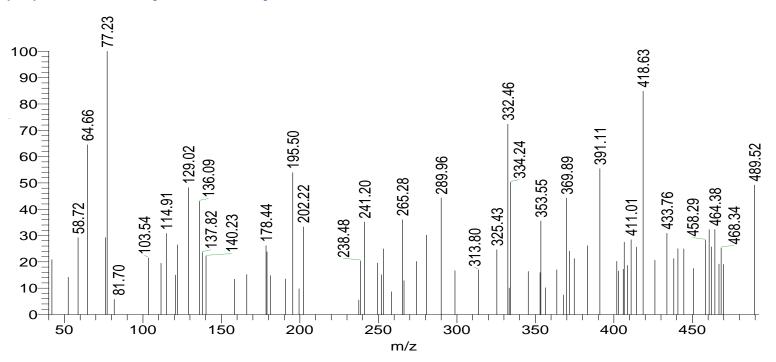


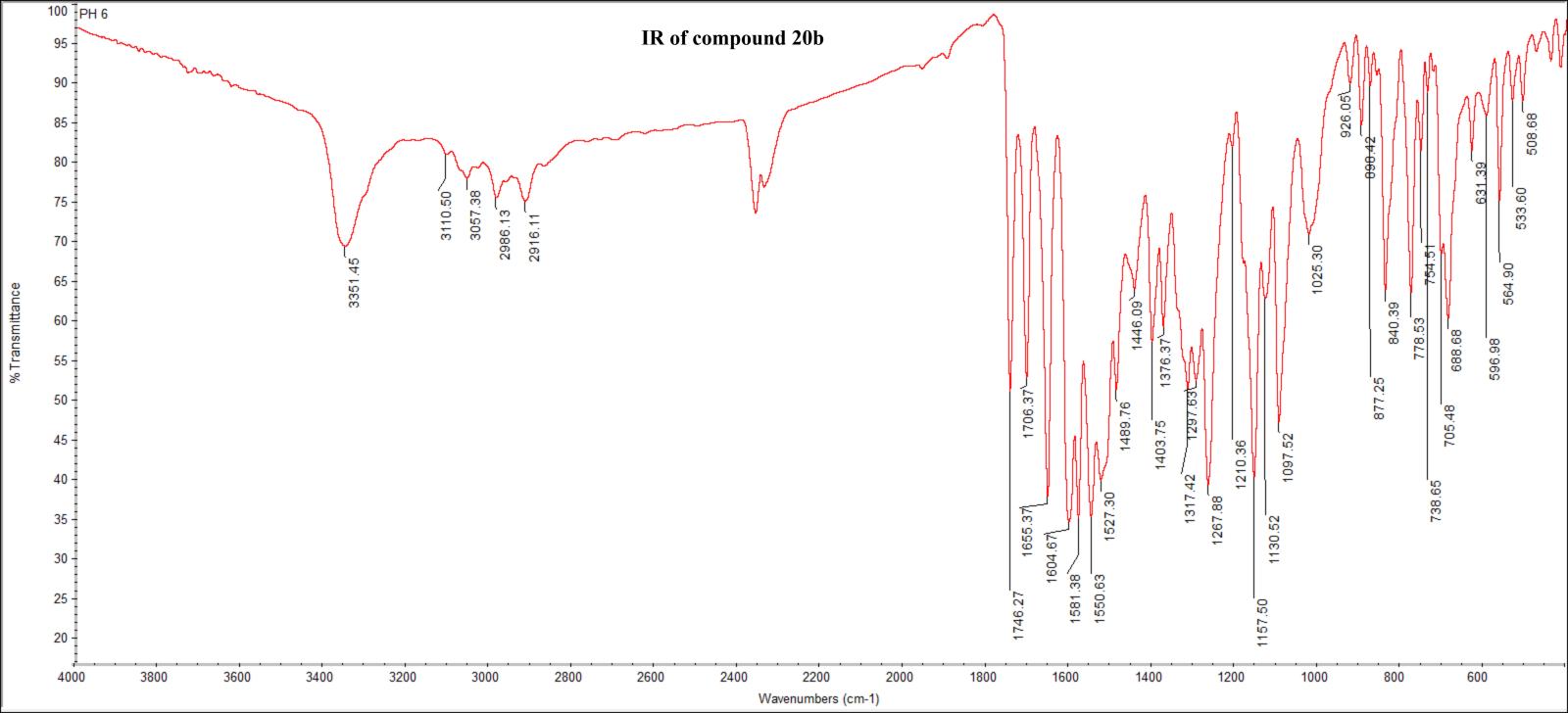


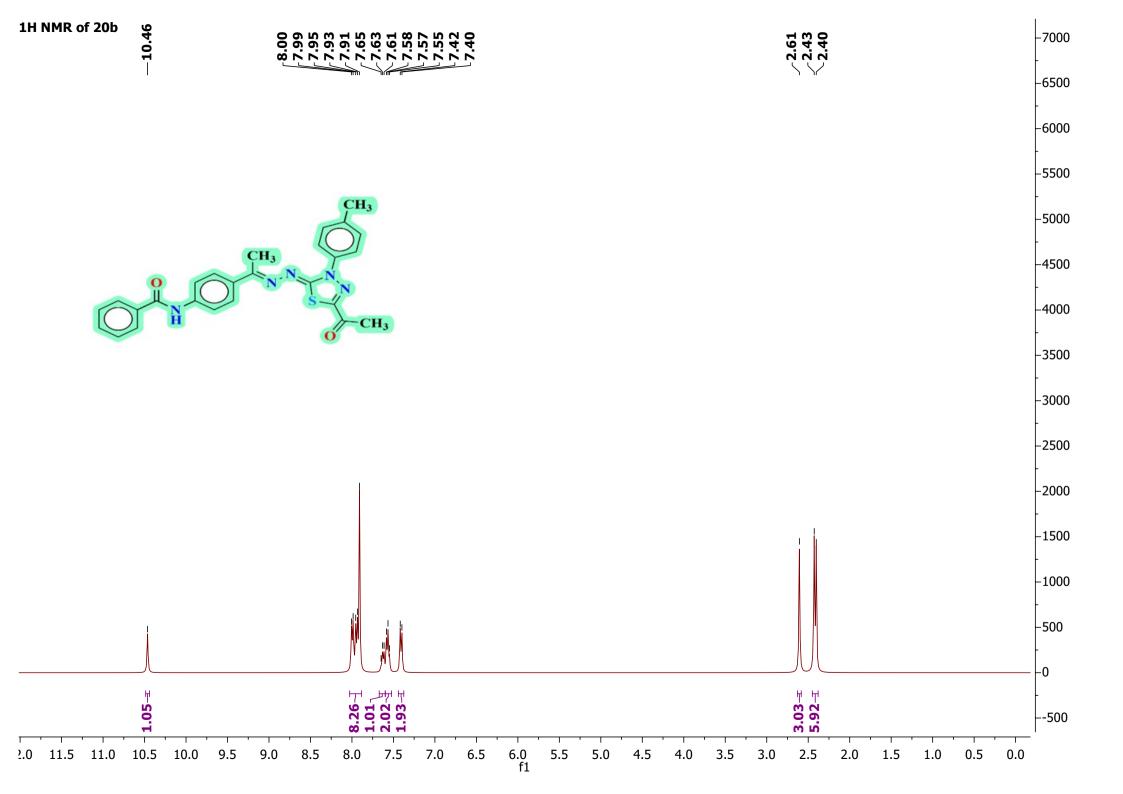

Mass spec. of compound 16

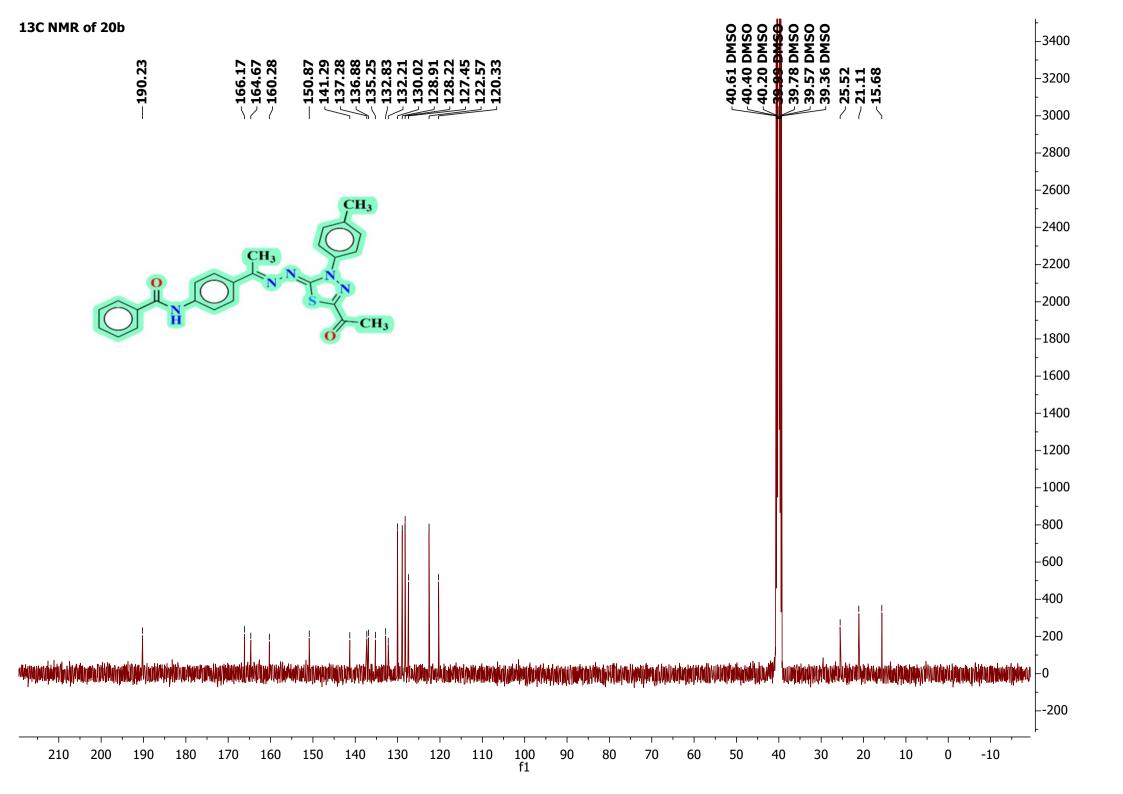
ibrahim-hassan-wa6 #190-195 RT: 3.20-3.28 AV: 6 SB: 26 1.21-1.34 , 0.87-1.14 NL: 8.99E1 T: {0,0} + c El Full ms [40.00-1000.00]



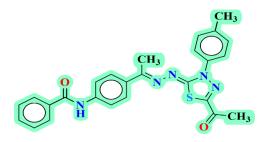


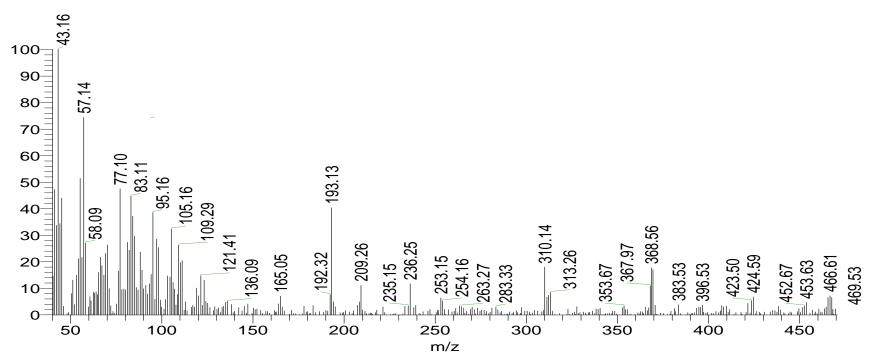


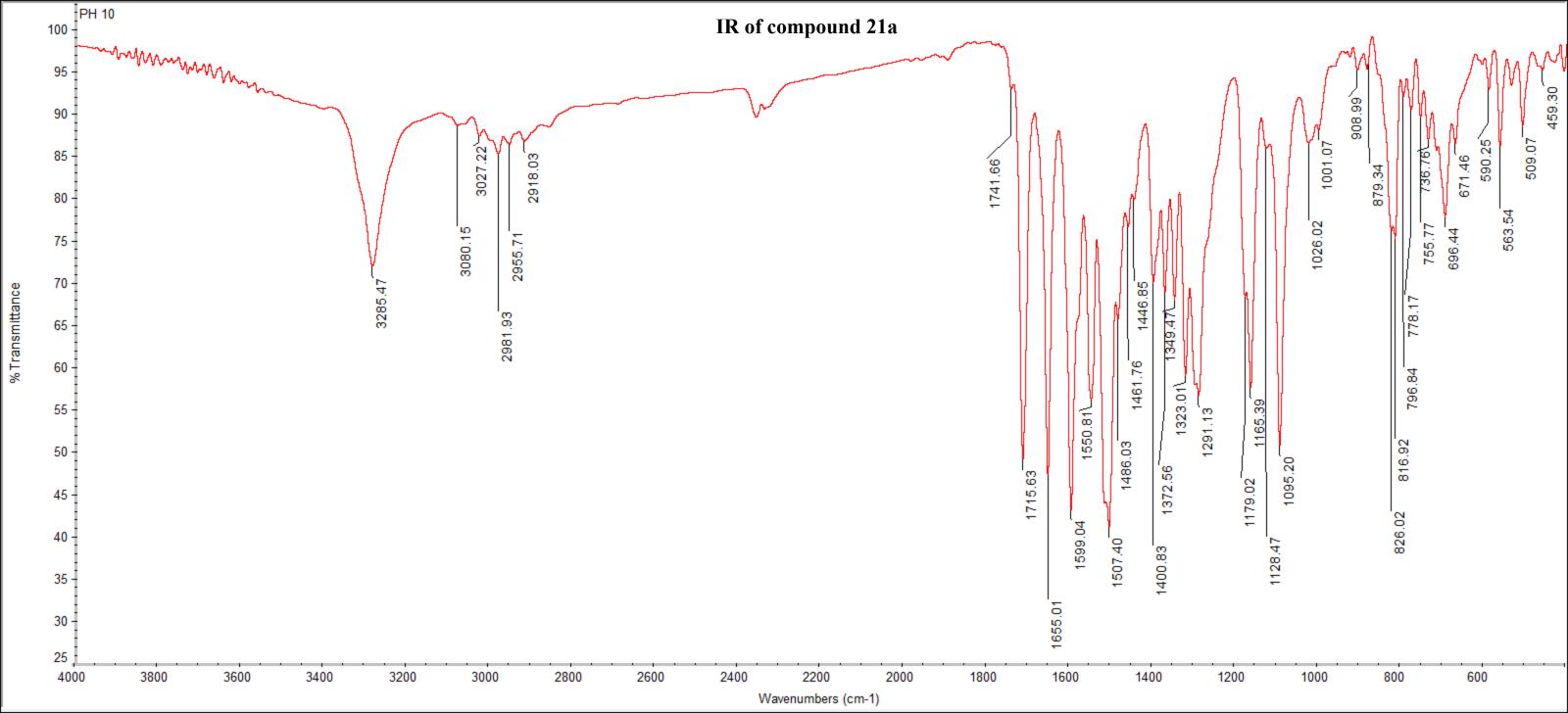

Mass spec. of compound 20a

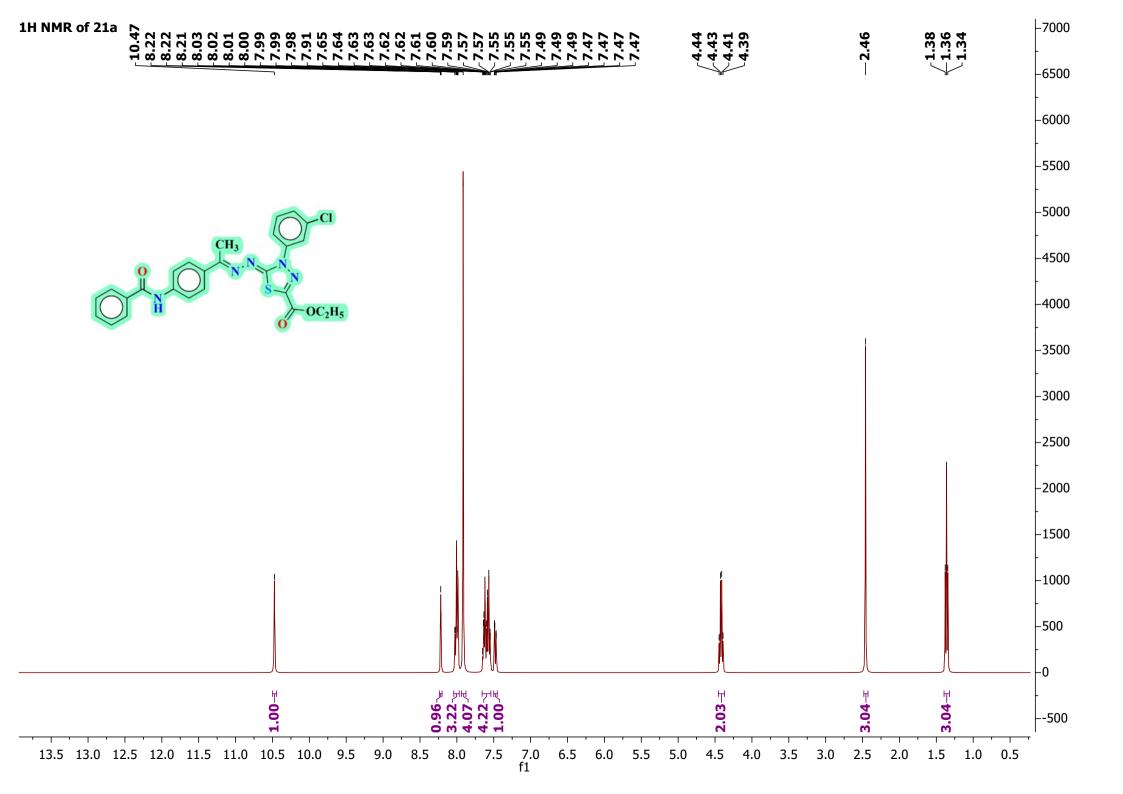


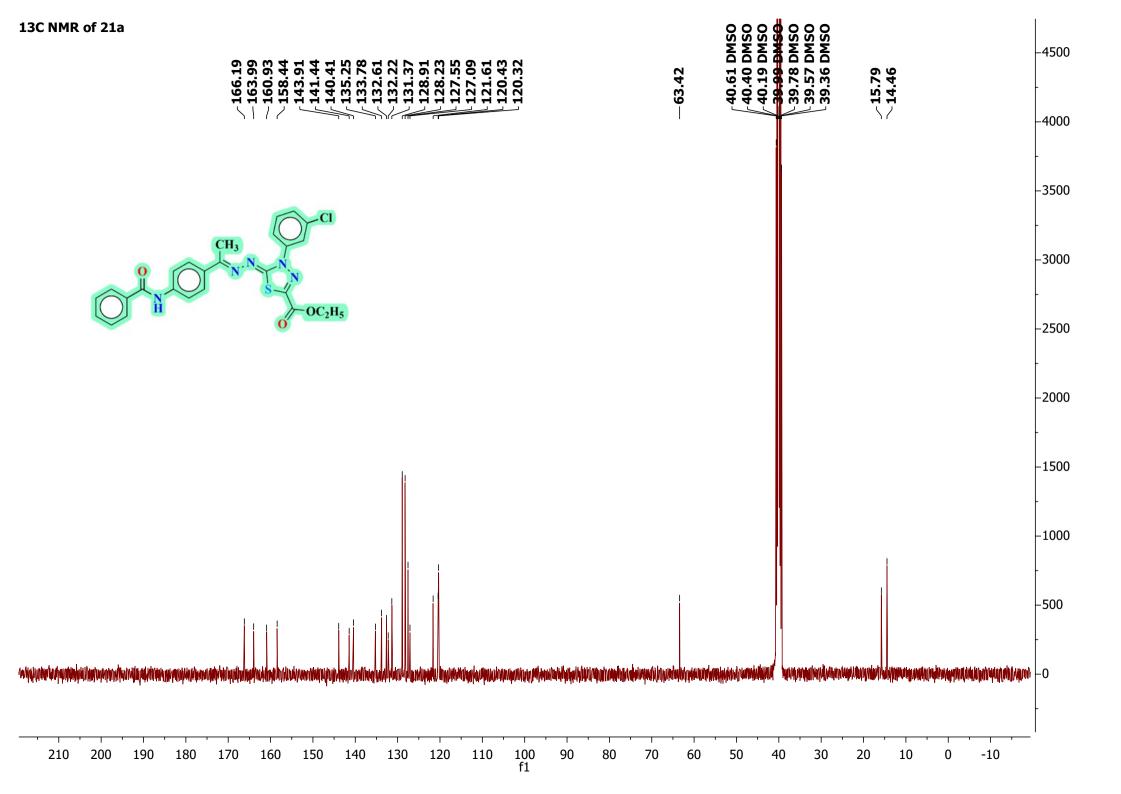
ibrahim-hassan-PH-5 #182 RT: 3.06 AV: 1 SB: 26 1.21-1.34, 0.87-1.14 NL: 4.71E2 T: {0,0} + c EI Full ms [40.00-1000.00]



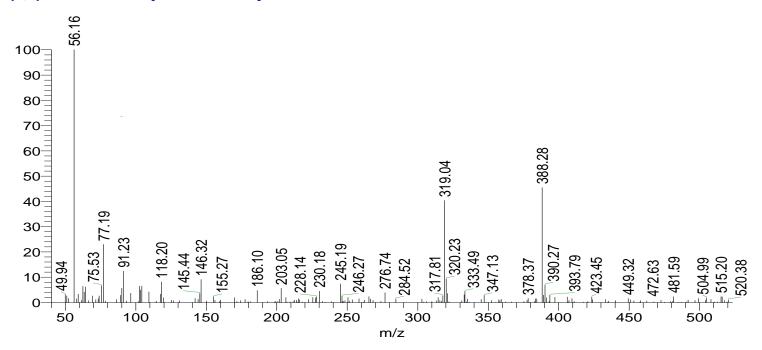


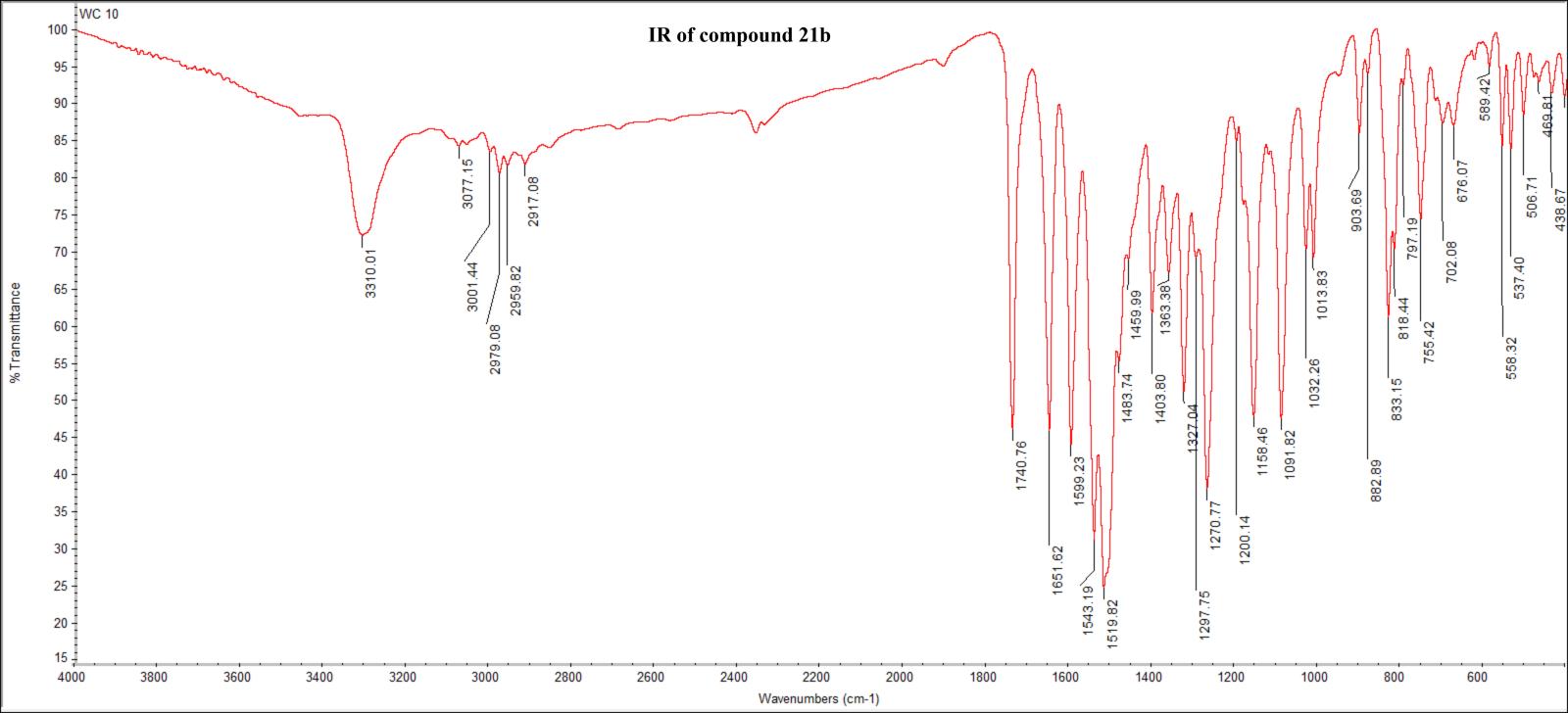


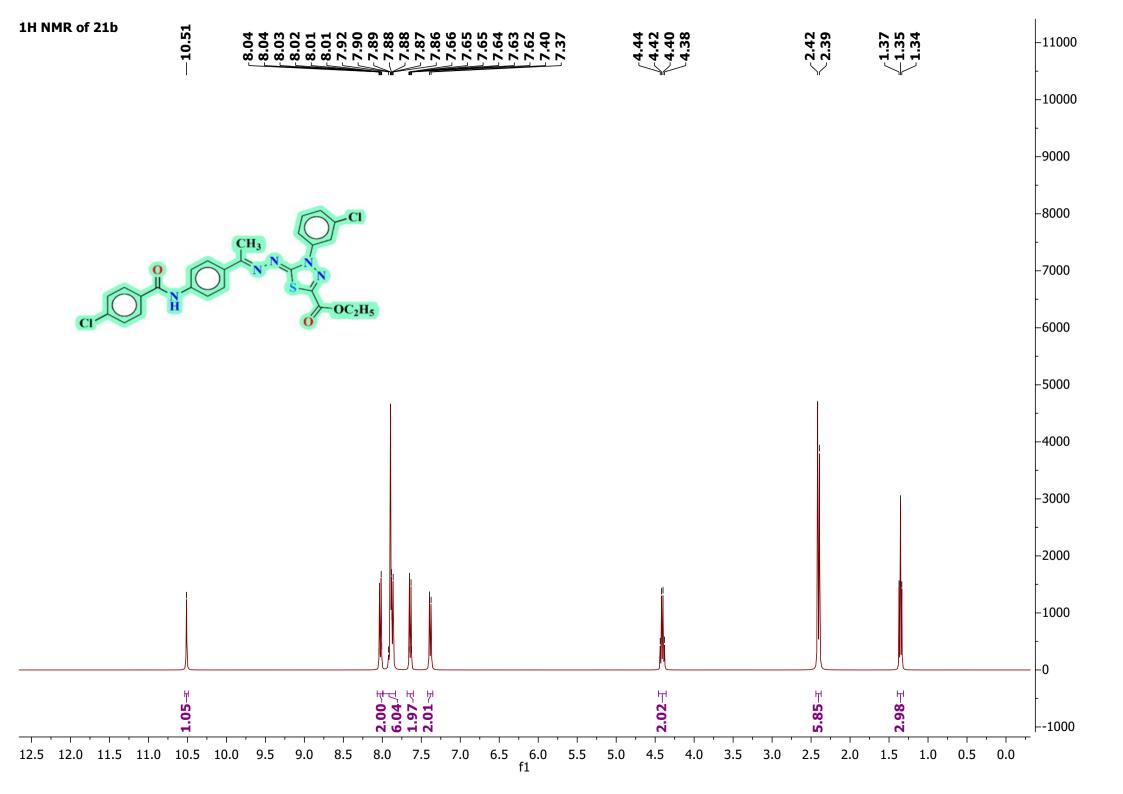

Mass spec. of compound 20b



ibrahim-hassan-PH-7 #136-154 RT: 2.29-2.59 AV: 19 SB: 26 1.21-1.34 , 0.87-1.14 NL: 2.28E3 T: {0,0} + c El Full ms [40.00-1000.00]







Mass spec. of compound 21a

ibrahim-hassan-PH-8 #231 RT: 3.88 AV: 1 SB: 26 1.21-1.34 , 0.87-1.14 NL: 2.03E4 T: {0,0} + c El Full ms [40.00-1000.00]

100 f1 90

80

70

60

50

40

30

20

10

0

200

190

180

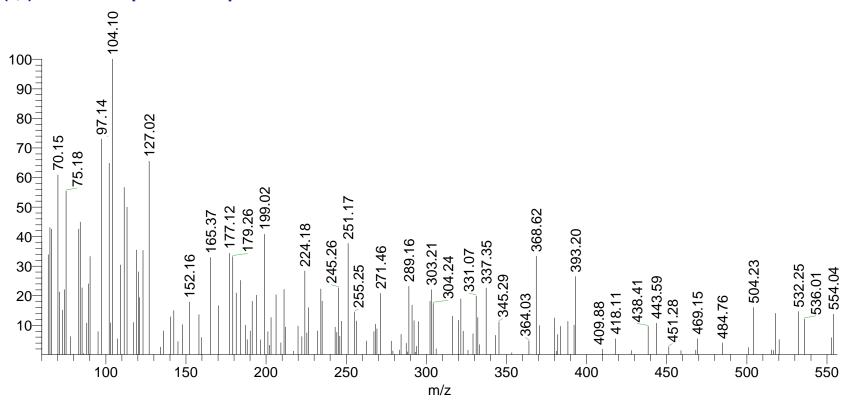
170

160

150


140

130


120

110

Mass spec. of compound 21b

ibrahim-hassan-wc10 #25 RT: 0.44 AV: 1 SB: 22 0.22-0.37, 0.28-0.47 NL: 3.53E3 T: {0,0} + c El Full ms [40.00-1000.00]

Mutagen

Mutagen

Mutagenesis 7(1):37-39;

0.599

1992

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model I	Prediction
---------	------------

Prediction: Non-Mutagen

Probability: 0.696
Enrichment: 1.25
Bayesian Score: -1.92
Mahalanobis Distance: 12

Mahalanobis Distance p-value: 0.000662

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	MORICIZINE	139953-78-9	3-(4'- Acetylbenzylidenamino)- 5H-1;2;3-triazin- [5;4b]indol-4-one
Structure	N N N N N N N N N N N N N N N N N N N		N N N N N N N N N N N N N N N N N N N

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Mutagen

Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.599

1. All properties and OPS components are within expected ranges.

Non-Mutagen

Non-Mutagen

0.572

PDR 1994

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Mutagen in training set SCFP_12 -1325991669 0.362 7 out of 8

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.666
Enrichment: 1.19
Bayesian Score: -3.01
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 4.07e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	r Compounds
--------------------	-------------

	<u>-</u>		
Name	83621-06-1	FLUTICASONE	110004-69-8
Structure	OH - OH	HO tare to the tar	H H H H H H H H H H H H H H H H H H H
Actual Endpoint	Non-Mutagen	Non-Mutagen	Mutagen
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Mutagen
Distance	0.619	0.628	0.628
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mutagen
Probability: 0.731
Enrichment: 1.31

Bayesian Score: -0.416 Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 0.000145

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	110004-69-8	83621-06-1	FLUTICASONE
Structure	THE	OH	HO ta le
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Predicted Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.610	0.619	0.620
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. PDR 1994 Chem. (2005) 48, 312-320	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	555539852	[*]:[cH]:[c](:[cH]):[c])C(=O)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883
Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.54
Enrichment: 0.967
Bayesian Score: -6.58
Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 0.00137

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
---------------------------	-----------

Name	6471-49-4	3567-69-9	HYCANTHONE FUROATE
Structure	DH NAME OF THE PART OF THE PAR	Na O O O O O O O O O O O O O O O O O O O	The state of the s
Actual Endpoint	Mutagen	Mutagen	Mutagen
Predicted Endpoint	Mutagen	Non-Mutagen	Mutagen
Distance	0.660	0.669	0.671
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	EMIC

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

i oatai o oo	Toutain Continuation			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[c])C(=0)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24

Mutagen

Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.700

 $C_{26}H_{21}CI_{2}N_{5}O_{3}S$

Molecular Weight: 554.44763

ALogP: 6.547
Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.495
Enrichment: 0.887
Bayesian Score: -7.62
Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 0.00101

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	26741-53-7	6358-85-6	6471-49-4
Structure			HN WAS ON THE STATE OF THE STAT

Non-Mutagen

Non-Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.682

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Non-Mutagen

Non-Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.664

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Mutagen in training set SCFP_12 555539852 0.447 22 out of 24

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Structural Similar Compounds				
Name	GLYBURIDE	38914-96-4	93957-54-1	
Structure	HN O	NH HCI HCI H ₂ O	AND Enerdioner OH OH	
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen	
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen	
Distance	0.590	0.592	0.600	
Reference	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	US Environmental Protection Agency at http://www.epa.gov/NCCT/ dsstox/sdf_isscan_externa I.html	

Model Prediction

Prediction: Non-Mutagen

Probability: 0.0531
Enrichment: 0.0951
Bayesian Score: -19.7
Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Mutagen in training set SCFP_12 -347281112 0.337 18 out of 22

([*]):[c](:[cH]:1)C(

[*])([*])[*]

Toxic in training

out of 1

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Toxic
Probability: 0.517
Enrichment: 0.984
Bayesian Score: -0.815

Mahalanobis Distance: 10.9

Mahalanobis Distance p-value: 0.0016

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bunazosin .HCI (Free base form)	Acemetacin	Prazosin .HCI (Free base form)
Structure	NH ₂		H ₂ N [*]

	1		
Actual Endpoint	Toxic	Non-Toxic	Toxic
Predicted Endpoint	Toxic	Non-Toxic	Toxic
Distance	0.601	0.603	0.615
Reference	Kiso to Rinsho 17:914- 924: 1983	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 17:57-62; 1979

Model Applicability

Feature Contribution

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 4.7477. Training min, max, SD, explained variance: -3.5766, 3.955, 1.214, 0.0216.

[*]:[c](:[*])NC(=O)C

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score SCFP_6 1626825020 0.271

O N N CI

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Toxic
Probability: 0.494

Enrichment: 0.938
Bayesian Score: -1.48

Mahalanobis Distance: 12.3

Mahalanobis Distance p-value: 7.15e-006
Prediction: Positive if the Bayesian score is above the estimated

best cutoff value from minimizing the false positive and false

negative rate

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Acemetacin	Beclomethasone Dipropionate	Estramustine Phosphate Disodium (Free acid form)		
Structure	OH C	HO. C. T.	O HO OH		
Actual Endpoint	Non-Toxic	Toxic	Non-Toxic		
Predicted Endpoint	Non-Toxic	Toxic	Non-Toxic		
Distance	0.639	0.662	0.663		
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 20(6):1219- 1236; 1980		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC17 out of range. Value: 3.0225. Training min, max, SD, explained variance: -2.7025, 2.8536, 1.067, 0.0167.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	282594097	O_sN_CI N N N N CI N N N N O SN_CI N N N N N N N N N N N N N N N N N N N	0.441	3 out of 3	

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Toxic
Probability: 0.526
Enrichment: 0.999
Bayesian Score: -0.59

Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 1.77e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Acemetacin	Beclomethasone Dipropionate	Estramustine Phosphate Disodium (Free acid form)		
Structure	OH C	HO TO	O HO OH		
Actual Endpoint	Non-Toxic	Toxic	Non-Toxic		
Predicted Endpoint	Non-Toxic	Toxic	Non-Toxic		
Distance	0.623	0.663	0.665		
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 20(6):1219- 1236; 1980		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	282594097	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.441	3 out of 3

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Toxic
Probability: 0.437

Enrichment: 0.832 Bayesian Score: -3.16

Mahalanobis Distance: 13.5

Mahalanobis Distance p-value: 3.92e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Beclomethasone Dipropionate	Estramustine Phosphate Disodium (Free acid form)	Brovanexine .HCl (Free base form)	
Structure	HO	CI N O O O O O O O O O O O O O O O O O O	Br N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Toxic	Non-Toxic	Toxic	
Predicted Endpoint	Toxic	Non-Toxic	Toxic	
Distance	0.659	0.660	0.681	
Reference	Oyo Yakuri 18(6):1021- 1038: 1979	Oyo Yakuri 20(6):1219- 1236: 1980	Kiso to Rinsho 16(13):7179-7195: 1982	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution				
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	282594097	O_NN O S N N ']NC(=0)[c]1:[cH]:[c H]:[7:[cH]:[cH]:1	0.441	3 out of 3

C₂₆H₂₁Cl₂N₅O₃S

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.442 Enrichment: 0.84 Bayesian Score: -3.03

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 4.85e-006

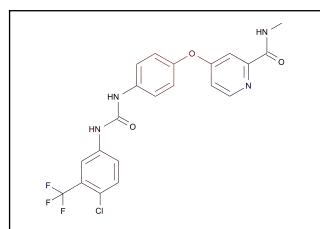
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name			Beclomethasone Dipropionate		
Structure	Br HN N	C C C C C C C C C C C C C C C C C C C	HO C		
Actual Endpoint	Toxic	Non-Toxic	Toxic		
Predicted Endpoint	Toxic	Non-Toxic	Toxic		
Distance	0.677	0.688	0.716		
Reference	Kiso to Rinsho 16(13):7179-7195; 1982	Oyo Yakuri 20(6):1219- 1236; 1980	Oyo Yakuri 18(6):1021- 1038; 1979		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	282594097	O_NN O S N O S N O S N O CI CI [*]NC(=0)[c]1:[cH]:[cH]:1	0.441	3 out of 3	

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Toxic
Probability: 0.592
Enrichment: 1.13
Bayesian Score: 1.15
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural S	Similar Compounds	
Name	Chenodial	Δms

Name	Chenodiol	Amsacrine	Ochratoxin a
Structure	ОН	N NH NH NH	OH O
Actual Endpoint	Toxic	Toxic	Toxic
Predicted Endpoint	Toxic	Toxic	Toxic
Distance	0.631	0.637	0.644
Reference	Arch Int Pharm 246:149- 158; 1980	Fundam Appl Toxicol 7(2):214-20; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	1559190850	[*]Č([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	0.441	3 out of 3	

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

C₂₁H₂₁N₅O₂S

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.208
Enrichment: 0.649
Bayesian Score: -4.72
Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.0666

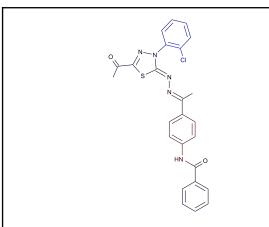
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	Moricizine	Isradipine	Nisoldipine	
Structure	N N N N N N N N N N N N N N N N N N N	N NH	H N O	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.575	0.618	0.633	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.206
Enrichment: 0.642
Bayesian Score: -5.37
Mahalanobis Distance: 13.7

Mahalanobis Distance p-value: 4e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds Name Fluticasone Moricizine Emetine					
Structure	HO to F to the total of the tot	N NH NH	O to the state of		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.632	0.686	0.692		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC28 out of range. Value: 3.464. Training min, max, SD, explained variance: -2.8298, 3.1935, 1.043, 0.0111.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231
Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.206
Enrichment: 0.644
Bayesian Score: -7.46
Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 0.00322

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Fluticasone	Moricizine	Emetine
Structure	HO to the total of	N N N N N N N N N N N N N N N N N N N	

Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.628	0.670	0.689
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Dru Eval.& Res./Off. Testing Res.) Sept. 1997

Carcinogen

Non-Carcinogen

Model Applicability

Actual Endpoint

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

Non-Carcinogen

- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{26}H_{22}CIN_5O_3S$

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205 Enrichment: 0.64 Bayesian Score: -6.85 Mahalanobis Distance: 20

Mahalanobis Distance p-value: 4.36e-018

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Reserpine	Bitolterol	Nicardipine
Structure		H OH	H N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.693	0.733	0.740
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC8 out of range. Value: -4.0148. Training min, max, SD, explained variance: -3.693, 7.8709, 1.782, 0.0323.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

Eval.& Res./Off. Testing &

Res.) Sept. 1997

- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP 2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

Non-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.766

Non-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.785

 $|C_{26}H_{21}CI_2N_5O_3S|$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.206
Enrichment: 0.643
Bayesian Score: -7.32
Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 5.77e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Reserpine	Bitolterol	Emetine		
Structure	O to the state of	H OH	O factor of the control of the contr		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		

Model Applicability

Predicted Endpoint

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC8 out of range. Value: -4.4388. Training min, max, SD, explained variance: -3.693, 7.8709, 1.782, 0.0323.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]

Carcinogen

Res.) Sept. 1997

0.674

- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP 2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set

 $C_{21}H_{16}CIF_3N_4O_3$

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6
Acceptors: 4

Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.257
Enrichment: 0.801
Bayesian Score: -0.321
Mahalanobis Distance: 14.9

Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds Name Glimepride Glyburide Fluvastatin					
Structure	NH NH	HN O O O	HO to HO		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.605	0.615	0.625		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

Feature Contribution					
	Top fe	atures for positive of	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	738938915		0.617	2 out of 2	

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.283 Enrichment: 0.691 Bayesian Score: -3.89 Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glimepride	Labetalol	Lansoprazole		
Structure	NH NH NH	HO 4 NH 2	F F		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.599	0.808	0.820		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- All properties and OPS components are within expected ranges. 1.
- Unknown ECFP_2 feature: 1336678434: [*][c](:[*]):[c](C([*])([*])[*]):c:[*] 2.
- Unknown ECFP_2 feature: -1952889961: [*]:[c](:[*])C(F)(F)F

Feature Contribution					
Top fea	atures for positive o	ontribution			
Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
-834094296	[*]:[eH]!e](O[e](:[c H]:[*]):[cH]:[*]):[c H]:[*]	0.351	1 out of 1		
	Top fea	Top features for positive of Bit/Smiles Feature Structure -834094296 [*]:[eH]:[e]:[o](O[c](:[cH]:[*]):[cH]:[*]):[cH]:[*]:[*]:[cH]:[*]:[*]:[cH]:[*]:[*]:[cH]:[*]:[*]:[cH]:[*]:[*]:[*]:[*]:[*]:[*]:[*]:[*]:[*]:[*	Top features for positive contribution Bit/Smiles Feature Structure Score -834094296 0.351		

C₂₁H₂₁N₅O₂S

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.376 Enrichment: 1.28 Bayesian Score: 2.3

Mahalanobis Distance: 16.3

Mahalanobis Distance p-value: 2.15e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Isradipine	Nisoldipine
Structure	TT NH	N NH	H N O
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.555	0.599	0.604
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC9 out of range. Value: 5.948. Training min, max, SD, explained variance: -5.0113, 5.5609, 1.7, 0.0303.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-1944671191	[*]:[c](:[*])NC(=O)C	0.891	4 out of 4	

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.249
Enrichment: 0.846
Bayesian Score: -2.34
Mahalanobis Distance: 17.4

Mahalanobis Distance p-value: 7.24e-013

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Fluticasone	Emetine	Moricizine	
Structure	HO to F	O to the state of	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	

Non-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.672

Non-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.679

Model Applicability

Predicted Endpoint

Distance

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Carcinogen

Res.) Sept. 1997

0.615

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-581879738	[*]NC(=0)[e]1:[eH]:[e H]:[']:[eH]:1	0.77	4 out of 5	

C₂₆H₂₃N₅O₂S

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.285 Enrichment: 0.97

Bayesian Score: -0.774 Mahalanobis Distance: 18.1

Mahalanobis Distance p-value: 1.74e-014

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluticasone	Moricizine	Emetine		
Structure	HO to the total of	N N N N N N N N N N N N N N N N N N N	O FALL OF THE PARTY OF THE PART		

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.614	0.655	0.669
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

 $C_{26}H_{22}CIN_5O_3S$

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.247
Enrichment: 0.84
Bayesian Score: -2.42
Mahalanobis Distance: 15.2

Mahalanobis Distance p-value: 4.65e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Reserpine	Nicardipine	Bitolterol
Structure		I NO	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.689	0.728	0.734
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set			
FCFP_6	-581879738	["]NC(=0)[e]1:[eH]:[e H]:["]:[eH]:1	0.77	4 out of 5			

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{26}H_{21}CI_{2}N_{5}O_{3}S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.262
Enrichment: 0.89
Bayesian Score: -1.75
Mahalanobis Distance: 15.3

Mahalanobis Distance p-value: 1.98e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds		
Name	Reserpine	Bitolterol	Emetine
Structure		H OH	O SAME AND A SAME AND
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.671	0.767	0.780
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Feature Contribution Top features for positive contribution						
FCFP_6	-581879738	O_NN O S N N O S N N O CI ("]NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	0.77	4 out of 5		

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.444
Enrichment: 1.51
Bayesian Score: 4.21
Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Glyburide	Glimepride	Fluvastatin
Structure	HN VIO	NH NH	HO HO
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.594	0.599	0.603
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
	Top fe	atures for positive c	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	71953198	[*]C([*])([*])F	0.612	12 out of 23	

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.145
Enrichment: 0.48
Bayesian Score: -14.1
Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 1e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Lovastatin	Griseofulvin
Structure	HO HO HN AME TO THE FEBRUARY OF THE FEBRUARY O	OH OH	DO STATE OF THE ST
Actual Endpoint	Single-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Distance	0.740	0.752	0.754
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 2.4658. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

Feature Co	ntribution					
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
FCFP_12	565998553	[*]C(=[*])C1=N[*][*]S	0.194	6 out of 14		

C₂₆H₂₃N₅O₂S

Molecular Weight: 469.55811

ALogP: 5.231
Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.146
Enrichment: 0.484
Bayesian Score: -9.63
Mahalanobis Distance: 13.9

Mahalanobis Distance p-value: 1.87e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Simvastatin	Lovastatin	Bicalutamide
Structure		The second secon	HO HN AN

	о̀н	о̀н	
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Distance	0.736	0.750	0.808
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 3.8138. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[1	0.239	2 out of 4	

0.944

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{26}H_{21}CI_2N_5O_3S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.132
Enrichment: 0.439
Bayesian Score: -15.5
Mahalanobis Distance: 13.7

Mahalanobis Distance p-value: 2.65e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Reserpine	Simvastatin	Lovastatin
Structure		THE CONTRACT OF THE CONTRACT O	OH OH
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.918

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

0.697

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	-581879738	O_NN_OCI O S N N O S N N CI ("]NC(=0)[e]1:[eH]:[e H]:["]:[eH]:[eH]:1	0.239	2 out of 4

HN O HN O

 $C_{21}H_{16}CIF_3N_4O_3$

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.139
Enrichment: 0.461
Bayesian Score: -14.7
Mahalanobis Distance: 21.3

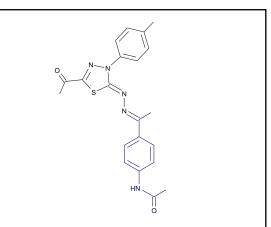
Mahalanobis Distance p-value: 4.93e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.


Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Glimepride	Bicalutamide	Lansoprazole
Structure	NH NH NH	HO H	N H S=0
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.626	0.700	0.866
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
FCFP_12	1499521844	F _F C _I [*]NC(=O)N[*]	0.39	5 out of 9		

C₂₁H₂₁N₅O₂S

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.732 Enrichment: 1.06 Bayesian Score: -2.9

Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 0.0561

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	COLCHICINE	1;8;9- ANTHRACENETRIOL; TRIACETATE	ANTHRAQUINONE; 1;1'- IMINODI-	
Structure	HN 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	no o	H.N.	
Actual Endpoint	Moderate_Severe	Moderate_Severe	Mild	
Predicted Endpoint	Moderate_Severe	Moderate_Severe	Mild	
Distance	0.621	0.738	0.741	
Reference	AJOPAA 31;837;48	BJOPAL 53;819;69	28ZPAK-;125;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
	Top fe	atures for positive of	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	633795852	[*]N([*])[c]1:[cH]![@ H]:[c](C):[cH]:[cH]:	0.294	3 out of 3	

Mild

Mild

0.806

28ZPAK-;126;72

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.0279

Enrichment: 0.0405 Bayesian Score: -13

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00264

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sillinar Compounds					
Name	ANTHRAQUINONE; 1;1'- IMINODI-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	2-(1'-ANTHRAQUINONYL)- AMINOBENZANTHRONE		
Structure	H H	HN m	The state of the s		

Mild

Mild

0.762

28ZPAK-:90:72

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Mild

Mild

0.697

28ZPAK-:125:72

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set		
FCFP_10	-1881275701	[*]N([*])[c]1:[cH]:[c H]:[cH]:[cH]:[c]:1Cl	0.186	1 out of 1		

8:609:58

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231
Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.0584 Enrichment: 0.0848 Bayesian Score: -11.8 Mahalanobis Distance: 10.6

Mahalanobis Distance p-value: 0.0173

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido)- ; butyl ester;	
Structure	H H H H H H H H H H H H H H H H H H H	HN _M		
Actual Endpoint	Mild	Mild	Moderate_Severe	
Predicted Endpoint	Mild	Mild	Moderate_Severe	
Distance	0.683	0.756	0.800	
Reference	28ZPAK-;125;72	28ZPAK-;90;72	Arzneimittel-Forschung	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set		
FCFP_10	633795852	[*]N([*])[c]1:[cH];[cH]: H]:[c](C):[cH]:[cH]:	0.294	3 out of 3		

Mild

Mild

0.855

736:86

Prehled Prumyslove

Latky; Marhold; J. pp

Toxikologie; Órganicke

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.0346 Enrichment: 0.0503 Bayesian Score: -12.7

Mahalanobis Distance: 9.45

Mahalanobis Distance p-value: 0.28

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ANTHRAQUINONE; 1;1'- IMINODI-	Anthraquinone; 1;1'- (anthraquinon-1;5- ylenediimino)di-	Anthraquinone; 1;1'- (anthraquinon-1;4- ylenediimino)di-
Structure	H H H H H H H H H H H H H H H H H H H		HN ^{rt}

Mild

Mild

0.854

736:86

Prehled Prumyslove

Toxikologie; Organicke Latky; Marhold; J. pp

Model Applicability

Actual Endpoint

Distance

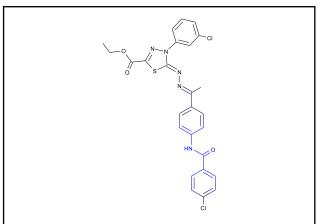
Reference

Predicted Endpoint

Structural Similar Compounds

Mild

Mild


0.824

28ZPAK-:125:72

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Moderate_Severe in training set FCFP_10 -745491832 0.304 29 out of 32

C₂₆H₂₁Cl₂N₅O₃S

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Mild Probability: 0.221 Enrichment: 0.321 Bayesian Score: -9.06

Mahalanobis Distance: 9.68

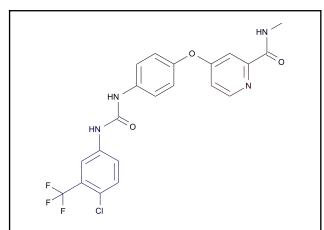
Mahalanobis Distance p-value: 0.189

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.


Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Anthraquinone; 1;1'- (anthraquinon-1;5- ylenediimino)di-	Anthraquinone; 1;1'- (anthraquinon-1;4- ylenediimino)di-	ANTHRAQUINONE; 1;1'- IMINODI-	
Structure	H H H		H	
Actual Endpoint	Mild	Mild	Mild	
Predicted Endpoint	Mild	Mild	Mild	
Distance	0.794	0.796	0.872	
Reference	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 736;86	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 736;86	28ZPAK-;125;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set		
FCFP_10	-149636017	[*]C(=[*])[c]1:[cH]; cH]:[c](CI):[eH]:[cH	0.352	7 out of 7		

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Mild Probability: 0.776 Enrichment: 1.13 Bayesian Score: -1.8

Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	METHANE;TRIS(4- AMINOPHENYL)-	
Structure	NH 2 HN rtn	OHCI CI CI OH	NH ₂ NH ₂ NH ₂	
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Distance	0.799	0.816	0.827	
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
	Top fea	ntures for positive o	contribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1695756380	[*][c] ¹ :[*]:[c]([*]): n:[cH]:[cH]:1	0.285	10 out of 11	

C₂₁H₂₁N₅O₂S

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18
Bayesian Score: 3.01

Mahalanobis Distance: 7.67

Mahalanobis Distance p-value: 0.972

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;8;9- ANTHRACENETRIOL; TRIACETATE	
Structure	O HN IT	H H	no	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.611	0.725	0.736	

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

28ZPAK-;125;72

BJOPAL 53:819:69

1. All properties and OPS components are within expected ranges.

AJOPAA 31:837:48

Feature Contribution					
	Top fea	atures for positive c	ontribution:		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1175665944	[*]:[cH]:[c](NC(=0)C) :[cH]:[*]	0.198	14 out of 14	

0.766

28ZPAK-;173;72

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 1.99

Mahalanobis Distance: 7.96

Mahalanobis Distance p-value: 0.933

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	BENZANILIDE;2';2'"- DITHIOBIS-	
Structure	H H H H H H H H H H H H H H H H H H H	HN _M	H N THE SECOND HE SECOND H	
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Irritant	Irritant	Non-Irritant	

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.752

28ZPAK-:90:72

1. All properties and OPS components are within expected ranges.

0.689

28ZPAK-:125:72

Feature Contribution					
	Top fe	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	-62776068	[*]N([*])[c]1:[cH]:[*]:[cH]:[cH]:[c]:1Cl	0.197	13 out of 13	

AJOPAA 31;837;48

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18
Bayesian Score: 1.48

Mahalanobis Distance: 7.87

Mahalanobis Distance p-value: 0.948

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	COLCHICINE	
Structure	H H H H H H H H H H H H H H H H H H H	HN AND THE OF TH	O HN Zt	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.677	0.748	0.766	

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

28ZPAK-:90:72

1. All properties and OPS components are within expected ranges.

28ZPAK-:125:72

Feature Contribution					
	Top fe	atures for positive of	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.184	7 out of 7	

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18
Bayesian Score: 1.6

Mahalanobis Distance: 9.15

Mahalanobis Distance p-value: 0.431

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;1'- IMINODI-	Anthraquinone; 1;1'- (anthraquinon-1;5- ylenediimino)di-	Anthraquinone; 1;1'- (anthraquinon-1;4- ylenediimino)di-	
Structure	H H H H H H H H H H H H H H H H H H H	H H H	HN-PT-	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.810	0.837	0.838	
Reference	28ZPAK-;125;72	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 736;86	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 736;86	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
	Top fe	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	675799546	[*]=C1[*][*]=NN1[o](: [*]):[*]	0.184	7 out of 7	

C₂₆H₂₁Cl₂N₅O₃S

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1
Enrichment: 1.18

Bayesian Score: 2.09

Mahalanobis Distance: 9.37

Mahalanobis Distance p-value: 0.317

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Anthraquinone; 1;1'- (anthraquinon-1;5- ylenediimino)di-	Anthraquinone; 1;1'- (anthraquinon-1;4- ylenediimino)di-	ANILINE;N;N'-1;4- ANTHRAQUINONYLENEBI S(4-PHENOXY-	
Structure	H H H	HN-4-		
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Irritant	Irritant	Non-Irritant	
Distance	0.785	0.786	0.849	
Reference	Prehled Prumyslove	Prehled Prumyslove	28ZPAK-;114;72	

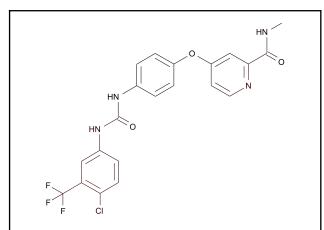
Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

736:86

Toxikologie; Órganicke

Latky; Marhold; J. pp


1. All properties and OPS components are within expected ranges.

Toxikologie; Órganicke

Latky; Marhold; J. pp

736:86

	Top fea	tures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	0.2	17 out of 17

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Irritant

Probability: 1
Enrichment: 1.18

Bayesian Score: 3.04 Mahalanobis Distance: 6.28

Mahalanobis Distance p-value: 1

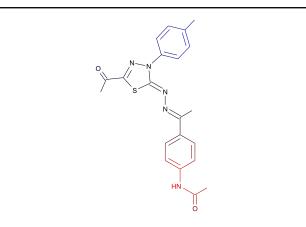
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	BENZANILIDE;2';2'''- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	
Structure	H N N H H	NH 2 HN 4h	OHCI CI CI OH	
Actual Endpoint	Non-Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Irritant	
Distance	0.743	0.791	0.801	
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1747237384	[*][c](:[*]):n:[cH]:[*]	0.208	44 out of 44

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

 $|C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.323 Enrichment: 1

Bayesian Score: 1.15

Mahalanobis Distance: 10.3

Mahalanobis Distance p-value: 0.246

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Nisoldipine	Isradipine	Moricizine
Structure	H N O	N NH	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.574	0.580	0.597
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure		Carcinogen in training set	

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.232
Enrichment: 0.721
Bayesian Score: -4.08
Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 0.0148

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Emetine	Carbenicillin	Moricizine	
Structure	Property of the state of the st	NH OHO	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen	
Distance	0.698	0.710	0.717	
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Eval.& Res./Off. Testing &

Res.) Sept. 1997

- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236
Enrichment: 0.732
Bayesian Score: -3.8
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.0374

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Emetine	Moricizine	Carbenicillin	
Structure	o which was a second of the se	N N N N N N N N N N N N N N N N N N N	NH OHO OH	
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.696	0.697	0.703	

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.266
Enrichment: 0.827
Bayesian Score: -1.76
Mahalanobis Distance: 18.4

Mahalanobis Distance p-value: 7.3e-017

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

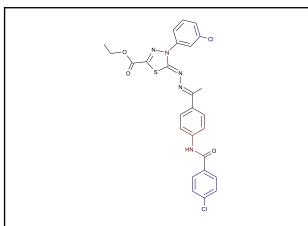
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Deserpidine	Nicardipine	Reserpine
Structure	OH WANT ON O	The state of the s	O to the state of
Actual Endpoint	Carcinogen	Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Carcinogen	Carcinogen
Distance	0.618	0.689	0.708
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]


Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{26}H_{21}CI_{2}N_{5}O_{3}S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.251
Enrichment: 0.779
Bayesian Score: -2.73
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 0.000622

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Deserpidine	Reserpine	Nicardipine	
Structure	ON HOUSE AND STATE OF THE PARTY		HANDO ON THE PROPERTY OF THE P	
Actual Endpoint	Carcinogen	Carcinogen	Carcinogen	
Predicted Endpoint	Carcinogen	Carcinogen	Carcinogen	
Distance	0.612	0.690	0.768	
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Eval.& Res./Off. Testing &

- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

Res.) Sept. 1997

- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution

		-	
Fingerprint	Bit/Smiles	Feature Structure	Carcinogen in training set

 $C_{21}H_{16}CIF_3N_4O_3$

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236
Enrichment: 0.734
Bayesian Score: -3.76
Mahalanobis Distance: 12.2

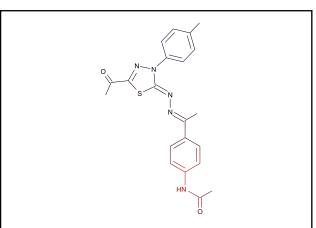
Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.


Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Glimepride	Glyburide	Fluvastatin
Structure	NH NH NH	HN in to	HO HO
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.620	0.635	0.635
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
Top features for positive contribution				
Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
-970385855	[*]N[c]d:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.613	2 out of 2	
	Top fea	Top features for positive of Bit/Smiles Feature Structure -970385855 [*]N[c]:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C(Top features for positive contribution Bit/Smiles Feature Structure Score -970385855 -970385855 (**]N**[c]4:[cH]:[*]:[c] ((**)):[c](:[cH]:1)C(

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.687
Enrichment: 1.84
Bayesian Score: 5.17
Mahalanobis Distance: 14.3

Mahalanobis Distance p-value: 1.38e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

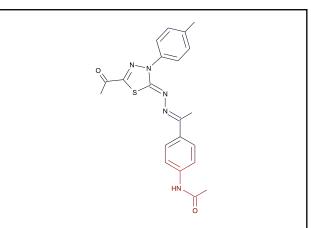
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Moricizine	Diltiazem	Omeprazole
Structure	N N N N N N N N N N N N N N N N N N N		N. N. N. T. S.

Actual Endpoint	Single-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Single-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Distance	0.552	0.669	0.695
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 3.0332. Training min, max, SD, explained variance: -2.8991, 3.0113, 1.313, 0.0255.

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
SCFP_4	2097618059	[*]:[cH]:[c](NC(=O)C) :[cH]:[*]	0.73	5 out of 6	

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.444
Enrichment: 1.33
Bayesian Score: 2.79
Mahalanobis Distance: 13.2

Mahalanobis Distance p-value: 0.000888

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Moricizine	Nisoldipine	Isradipine	
Structure	N NH	H		

			/
Actual Endpoint	Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Carcinogen	Carcinogen
Distance	0.575	0.609	0.616
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]:1	0.615	5 out of 7

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.296 Enrichment: 0.886 Bayesian Score: -2.29 Mahalanobis Distance: 15.9

Mahalanobis Distance p-value: 7.31e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Emetine	Carbenicillin	Moricizine
Structure	The state of the s	O NH	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.694	0.701	0.708
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature	Contr	ibution
----------------	-------	---------

Top features for positive contribution				
SCFP_6	-347048986	[*]C(=[*])N[o]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.334 Enrichment: 0.998 Bayesian Score: -0.816 Mahalanobis Distance: 16.4

Mahalanobis Distance p-value: 7.7e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly linaccurate.

Name	Moricizine	Carbenicillin	Emetine
Structure	N N N N N N N N N N N N N N N N N N N	H NH	O standard N N N N N N N N N N N N N N N N N N N

Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.680	0.685	0.686
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution							
Top features for positive contribution							
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set			
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7			

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.29 Enrichment: 0.868 Bayesian Score: -2.53 Mahalanobis Distance: 16.9

Mahalanobis Distance p-value: 4.49e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Deserpidine	Reserpine	Nicardipine
Structure	ON THE PROPERTY OF THE PROPERT		
Actual Endpoint	Carcinogen	Carcinogen	Carcinogen
Predicted Endpoint	Carcinogen	Carcinogen	Carcinogen
Distance	0.610	0.700	0.733
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

OPS PC3 out of range. Value: 8.3204. Training min, max, SD, explained variance: -5.918, 7.9008, 2.435, 0.0553.

Feature Contribution

-	<u> </u>	atures for positive of		<u> </u>
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	0.615	5 out of 7

0.782

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

C₂₆H₂₁CI₂N₅O₃S

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.275
Enrichment: 0.822
Bayesian Score: -3.21
Mahalanobis Distance: 17.2

Mahalanobis Distance p-value: 9.39e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Deserpidine	Reserpine	Bitolterol		
Structure	OH THE PROPERTY OF THE PROPERT	O Tambo O Tamb	H OH		
Actual Endpoint	Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Carcinogen	Carcinogen	Non-Carcinogen		

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.680

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

0.601

Feature Co	Feature Contribution					
	Top fea	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
SCFP_6	-347048986	O_NNO O S NN NO NO NO NO NO NO NO (*)C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7		

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.293 Enrichment: 0.878 Bayesian Score: -2.4

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Glyburide	Glimepride	Fluvastatin
Structure	HIN TO THE PART OF	NH NH	HO HO

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.593	0.600	0.615
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution						
	Top fea	atures for positive o	ontribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set			
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7			

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.562
Enrichment: 1.36
Bayesian Score: 4.21
Mahalanobis Distance: 16.7

Mahalanobis Distance p-value: 3.13e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Isradipine	Omeprazole
Structure	TT NH	N NH	ON NOTE OF THE PARTY OF THE PAR
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.594	0.636	0.706
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution

i catule co	THE IDUCTION					
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set		
SCFP_8	2097618059	[*]:[cH]:[c](NC(=0)C) :[cH]:[*]	0.681	6 out of 7		

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Irritant Probability: 8.91e-005 Enrichment: 9.67e-005 Bayesian Score: -9

Mahalanobis Distance: 9.99

Mahalanobis Distance p-value: 0.0644

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 5- (2H-naphtho(1,2-d)triazol- 2-yl)-2-(2-phenyl ethenyl)-, sodium salt	
Structure	O CONTROL OH CONTROL O	H ₂ N ₄ n ₄ N ₄ N ₄ N ₄ N ₅		
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Non-Irritant	Irritant	
Distance	0.654	0.771	0.782	
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
		•		•

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.876
Enrichment: 0.952
Bayesian Score: -2.99
Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.00706

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Anthraquinone, 1,1'- iminodi-	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-		
Structure	OH CONTRACTOR OF THE CONTRACTO	THE PART OF THE PA	O C C C C C C C C C C C C C C C C C C C		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant		
Distance	0.721	0.795	0.817		
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
	•	•	-	•	

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.912 Enrichment: 0.99 Bayesian Score: -2.61 Mahalanobis Distance: 10.3

Mahalanobis Distance p-value: 0.0276

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Anthraquinone, 1,1'- iminodi-	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	
Structure	OH OH	THOUSE THE PROPERTY OF THE PRO	O C C C C C C C C C C C C C C C C C C C	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant	
Distance	0.737	0.782	0.789	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
		•		•		

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.879
Enrichment: 0.955
Bayesian Score: -2.97
Mahalanobis Distance: 9.79

Mahalanobis Distance p-value: 0.103

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	Anthraquinone, 1,1'- iminodi-	
Structure	OH O	O C C C C C C C C C C C C C C C C C C C		
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.755	0.897	0.953	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
	•	•	-	•	

 $C_{26}H_{21}CI_2N_5O_3S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.873
Enrichment: 0.948
Bayesian Score: -3.02
Mahalanobis Distance: 10

Mahalanobis Distance p-value: 0.0588

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Butanamide, 2,2'-((3,3'-dichloro(1,1'-biphenyl)-4,4'-diyl)bis(azo)) bis(N-(2,4-dimethylphenyl)-3-oxo-	Anthraquinone, 3- methoxy-5,4'-iminobis(1- benzamido-	
Structure				
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Non-Irritant	Non-Irritant	
Distance	0.774	0.915	0.979	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	NTIS** National Technical Information Service. (Springfield, VA 22161) Forme rly U.S. Clearinghouse for Scientific & Technical Information. Volume(issue)/pag e/year: OTS0555058	28ZPAK "Sbornik Vysledku Toxixologickeho Vysetreni Latek A Pripravku," Marhol d, J.V., Institut Pro Vychovu Vedoucicn Pracovniku Chemickeho Prumyclu Praha, Cz echoslovakia, 1972 Volume(issue)/page/year: -,114,1	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

		Ontribution	eatures for positive c	TOP IE	
ining	Irritant in tra	Score	Feature Structure	Bit/Smiles	ingerprint
		ļ	ļ		
	set				

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.264
Enrichment: 0.287
Bayesian Score: -5.23
Mahalanobis Distance: 8.27

Mahalanobis Distance p-value: 0.791

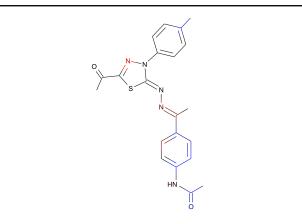
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Sim	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Sulfide, bis(4-t-butyl-m- cresyl)-
Structure	OHCI CI CI OH	OH OH	OH OH
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Irritant
Distance	0.844	0.871	0.884
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
	•	•	•		

TOPKAT_Carcinogenic_Potency_TD50_Mouse

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 24.9

Unit: mg/kg_body_weight/day Mahalanobis Distance: 11.4

Mahalanobis Distance p-value: 0.000279

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	470	C.I. pigment red 3	[4-Chloro-6-(2,3-xylidino)- 2-pyri-midinylthio]acetic acid s	
Structure	OH O	N N N N N N N N N N N N N N N N N N N	NH N	
Actual Endpoint (-log C)	4.62839	0.937339	4.47685	
Predicted Endpoint (-log C)	3.93264	3.17837	3.8529	
Distance	0.663	0.676	0.676	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 8.42

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 1.87e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds

Name	646	Acifluorfen	Ochratoxin A
Structure	H N N N N N N N N N N N N N N N N N N N	O OH O	OH OH CI
Actual Endpoint (-log C)	0.937339	3.40908	4.79932
Predicted Endpoint (-log C)	3.26294	3.10974	3.6353
Distance	0.788	0.822	0.825
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 8. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231
Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 18.9

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.5

Mahalanobis Distance p-value: 1.8e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	646	C.I. pigment red 3	[4-Chloro-6-(2,3-xylidino)- 2-pyri-midinylthio]acetic acid s	
Structure	OH	H H N N N N N N N N N N N N N N N N N N	HO O NH	
Actual Endpoint (-log C)	0.937339	0.937339	4.47685	
Predicted Endpoint (-log C)	3.26294	3.17837	3.8529	
Distance	0.759	0.807	0.818	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883
Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 17.6

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.6

Mahalanobis Distance p-value: 7.31e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	223	Tamoxifen citrate	5,5´-(1,1´-Biphenyl)-2,5- dyl-bis (oxy)(2,2- dimethylpentanoic acid)	
Structure	AND Enarthmen	OH OH	OH HO	
Actual Endpoint (-log C)	5.08368	5.05965	3.90166	
Predicted Endpoint (-log C)	5.08273	4.24168	2.75893	
Distance	0.786	0.867	0.873	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

C₂₆H₂₁CI₂N₅O₃S

Molecular Weight: 554.44763

ALogP: 6.547

Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 9.61

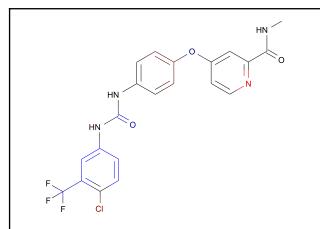
Unit: mg/kg_body_weight/day Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 7.55e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	223	Estradiol mustard	5,5´-(1,1´-Biphenyl)-2,5- dyl-bis (oxy)(2,2- dimethylpentanoic acid)	
Structure	AND Enerthmer		OH HO	
Actual Endpoint (-log C)	5.08368	5.58568	3.90166	
Predicted Endpoint (-log C)	5.08273	5.97715	2.75893	
Distance	0.795	0.890	0.897	
Reference	CPDB	CPDB	CPDB	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC20 out of range. Value: 3.8772. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- OPS PC24 out of range. Value: -4.6329. Training min, max, SD, explained variance: -4.4826, 3.8729, 1.034, 0.0133.
- 3. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 4. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 8. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution

Top features for positive contribution						
ingerprint	Bit/Smiles	Feature Structure	Score			
			<u>!</u>			

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

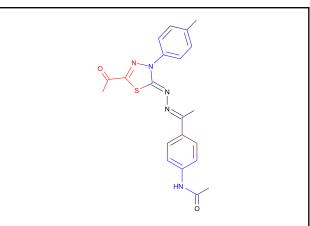
Prediction: 19.2

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.94e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide	
Structure	OH HO CI	ANO Enantomer ANO Enantomer HN HO O	NH NH NH	
Actual Endpoint (-log C)	4.79932	4.79932	3.91517	
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186	
Distance	0.718	0.718	0.738	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC
- 3. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
ECFP_6	655739385	[*]N=[*]	0.229		
		[]N-[]			

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 10.5

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.2

Mahalanobis Distance p-value: 1.49e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. pigment red 3	4,4'- Sulfonylbisacetanilide	Omeprazole	
Structure	O N N N N N N N N N N N N N N N N N N N	HN NH NH		
Actual Endpoint (-log C)	2.41938	3.77655	3.4628	
Predicted Endpoint (-log C)	4.26375	3.55337	4.7324	
Distance	0.634	0.650	0.656	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357		

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 6.85

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.7

Mahalanobis Distance p-value: 3.34e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. direct brown 95	FD & C violet no. 1	3-(Cyclopentyloxy)-N-(3,5-di-chloro-4-pyridyl)-4-methoxy-benzamide	
Structure		OHO N		
Actual Endpoint (-log C)	5.31387	2.8543	5.39369	
Predicted Endpoint (-log C)	4.30266	3.40838	4.27874	
Distance	0.659	0.719	0.749	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	565998553	" C(=["])C1=N["]["]S	0.357			

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 15.5

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.3

Mahalanobis Distance p-value: 2.75e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. direct brown 95	FD & C violet no. 1	Omeprazole	
Structure		00H0		
Actual Endpoint (-log C)	5.31387	2.8543	3.4628	
Predicted Endpoint (-log C)	4.30266	3.40838	4.7324	
Distance	0.646	0.713	0.751	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357		

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8 Donors: 1

Model Prediction

Prediction: 15.6

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.6

Mahalanobis Distance p-value: 2.14e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccuratė.

Structural Similar Compounds					
Name	C.I. direct brown 95	223	FD & C violet no. 1		
Structure		AND Enationer	O CHO		
Actual Endpoint (-log C)	5.31387	6.29867	2.8543		
Predicted Endpoint (-log C)	4.30266	7.5657	3.40838		
Distance	0.668	0.799	0.799		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution Top features for positive contribution					
FCFP_6	565998553	[*]C(=[*])C1=N[*][*]S	0.357		

 $C_{26}H_{21}CI_2N_5O_3S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

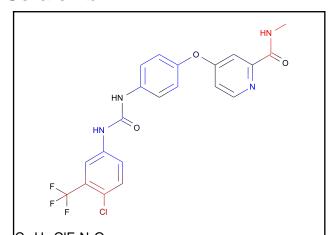
Model Prediction

Prediction: 5.66

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.6

Mahalanobis Distance p-value: 2.54e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.


Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I. direct brown 95	223	FD & C violet no. 1		
Structure	Name of the second of the seco	AND Exercionar	OS OHO		
Actual Endpoint (-log C)	5.31387	6.29867	2.8543		
Predicted Endpoint (-log C)	4.30266	7.5657	3.40838		
Distance	0.717	0.803	0.822		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	0 NN N 0 S N N N O H C C C C C C C C C C C C C C C C C C C	0.357		

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 14.2

Unit: mg/kg_body_weight/day Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 9.56e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluvastatin	913	Ochratoxin A		
Structure	HO HO	OH OH	OH HO CI		
Actual Endpoint (-log C)	3.51742	3.51742	6.47264		
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501		
Distance	0.597	0.597	0.666		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

Feature Structure	Score 0.234
Feature Structure	
× 0 × 0 0	0.234
[*]=O	
	[*]=O

 $|C_{21}H_{21}N_5O_2S|$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0755

Unit: g/kg_body_weight
Mahalanobis Distance: 30.7

Mahalanobis Distance p-value: 7.29e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	DILTIAZEM	SODIUM ACIFLUORFEN	DANTROLENE.NA		
Structure		F F M OH OH	HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		
Actual Endpoint (-log C)	4.21961	4.16036	4.19625		
Predicted Endpoint (-log C)	4.005	4.65915	4.62637		
Distance	0.600	0.624	0.651		
Reference	NDA-18602	EPA COVER SHEET 0192;891101;(1)	NDA-17443		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -474544785: [*]NC(=O)C
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
 Unknown ECFP 6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 10. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
 11. Unknown ECFP 6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 12. Unknown ECFP 6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP 6 feature: 129482634: [*]C(=[*])C(=O)C
- 16. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]

Feature Contribution

Top features for positive contribution

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0791

Unit: g/kg_body_weight
Mahalanobis Distance: 32.1

Mahalanobis Distance p-value: 1.54e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUVALINATE	D & C RED 9	RHODAMINE 6G	
Structure	F NNH NH NH NH NH	NOH ON OH	THE STATE OF THE S	
Actual Endpoint (-log C)	5.30356	3.87715	4.54906	
Predicted Endpoint (-log C)	4.89944	3.6546	4.6787	
Distance	0.702	0.717	0.724	
Reference	EPA COVER SHEET 0281;880630;(1)	NTP REPORT # 225	NTP 364 39	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC32 out of range. Value: 4.6507. Training min, max, SD, explained variance: -4.2021, 4.2975, 1.228, 0.0066.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP 6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP 6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])CI

0.721

NTP REPORT # 225

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231
Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0906

Unit: g/kg_body_weight Mahalanobis Distance: 30.9

Mahalanobis Distance p-value: 3e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	RHODAMINE 6G	DILTIAZEM	D & C RED 9		
Structure		N N N N N N N N N N N N N N N N N N N	ON OH ON OH		
Actual Endpoint (-log C)	4.54906	4.21961	3.87715		
Predicted Endpoint (-log	4.6787	4.005	3.6546		

Model Applicability

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.717

NDA-18602

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]

0.716

NTP 364 39

- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP 6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 12. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 13. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 14. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown ECFP 6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]

Feature Contribution

 $C_{26}H_{22}CIN_5O_3S$

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.059

Unit: g/kg_body_weight
Mahalanobis Distance: 30.1

Mahalanobis Distance p-value: 6.28e-025

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	FLUVALINATE	RESERPINE	DIARYLANILIDE YELLOW		
Structure	The state of the s				
Actual Endpoint (-log C)	5.30356	6.38645	2.70208		
Predicted Endpoint (-log C)	4.89944	5.548	3.76154		
Distance	0.694	0.705	0.726		
Reference	EPA COVER SHEET 0281;880630;(1)	NTP 193 22	NTP 30 C-4		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 10. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP 6 feature: 1430791942: [*]OC(=O)C(=[*])[*]
- 16. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 17. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 18. Unknown ECFP_6 feature: -949601813: [*]OCC
- 19. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

 $C_{26}H_{21}CI_2N_5O_3S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

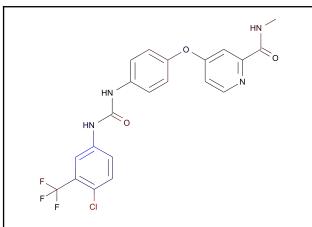
Model Prediction

Prediction: 0.0336

Unit: g/kg_body_weight Mahalanobis Distance: 30.3

Mahalanobis Distance p-value: 2.68e-025

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.


Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	FLUVALINATE	DIARYLANILIDE YELLOW	RESERPINE		
Structure	THE		Other was a second of the seco		
Actual Endpoint (-log C)	5.30356	2.70208	6.38645		
Predicted Endpoint (-log C)	4.89944	3.76154	5.548		
Distance	0.692	0.694	0.710		
Reference	EPA COVER SHEET 0281;880630;(1)	NTP 30 C-4	NTP 193 22		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 4. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 10. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP 6 feature: 1430791942: [*]OC(=O)C(=[*])[*]
- 16. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 17. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 18. Unknown ECFP_6 feature: -949601813: [*]OCC
- 19. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

 $C_{21}H_{16}CIF_3N_4O_3$

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6
Acceptors: 4

Donors: 3

Model Prediction

Prediction: 0.00483
Unit: g/kg_body_weight
Mahalanobis Distance: 30

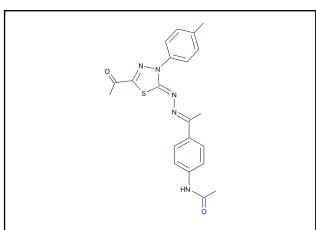
Mahalanobis Distance p-value: 1,21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simil	lar Compounds
------------------	---------------

Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN	
Structure	HIN O	N N N C	F CI OH	
Actual Endpoint (-log C)	4.21661	3.87715	4.16036	
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915	
Distance	0.636	0.722	0.736	
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 4. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 1336678434: [*][c](:[*]):[c](:[cH]:[*])C([*])([*])[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 12. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 13. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 864287155: [*]NC

Feature Contribution

Top features for positive contribution

 $C_{21}H_{21}N_5O_2S$

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

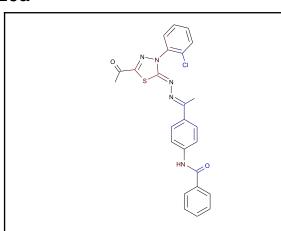
Model Prediction

Prediction: 0.0441
Unit: g/kg_body_weight

Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 2.48e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.


Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	COUMAPHOS	DISPERSE YELLOW 3	AZINPHOSMETHYL	
Structure	Clandon	NO N	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	5.60537	2.77703	4.65515	
Predicted Endpoint (-log C)	4.15004	2.80195	4.22281	
Distance	0.608	0.649	0.670	
Reference	NCI/NTP TR-96	NCI/NTP TR-222	NCI/NTP TR-69	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Cont	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095	

 $C_{25}H_{20}CIN_5O_2S$

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0624
Unit: g/kg_body_weight
Mahalanobis Distance: 9.31

Mahalanobis Distance p-value: 0.000508

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I.PIGMENT RED 3	RESERPINE	ROTENONE	
Structure	The state of the s			
Actual Endpoint (-log C)	2.65635	6.13118	5.06769	
Predicted Endpoint (-log C)	2.97957	4.38304	4.11907	
Distance	0.773	0.780	0.815	
Reference	NCI/NTP TR-407	NCI/NTP TR-193	NCI/NTP TR-320	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.2711. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095	

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.0423
Unit: g/kg_body_weight
Mahalanobis Distance: 9.28

Mahalanobis Distance p-value: 0.000577

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I.PIGMENT RED 3	RESERPINE	ROTENONE	
Structure	OH O NEO	O FALL O THE O		
Actual Endpoint (-log C)	2.65635	6.13118	5.06769	
Predicted Endpoint (-log C)	2.97957	4.38304	4.11907	
Distance	0.714	0.788	0.789	
Reference	NCI/NTP TR-407	NCI/NTP TR-193	NCI/NTP TR-320	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	* C1=[*][*]C(=[*])S1	0.095	

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.0811

Unit: g/kg_body_weight Mahalanobis Distance: 9.03

Mahalanobis Distance p-value: 0.0013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	RESERPINE	C.I.PIGMENT RED 23	COUMAPHOS	
Structure	O Ta Market Mark	ON NO OH NAMES OF THE PARTY OF		
Actual Endpoint (-log C)	6.13118	2.30052	5.60537	
Predicted Endpoint (-log C)	4.38304	3.55333	4.15004	
Distance	0.670	0.810	0.868	
Reference	NCI/NTP TR-193	NCI/NTP TR-411	NCI/NTP TR-96	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.4937. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

eature Contribution					
Top features	for positive contributio	n			
Bit/Smiles	Feature Structure	Score			
-1143715940	[*]C1=[*][*]C(=[*])S1	0.095			
	Top features Bit/Smiles	Top features for positive contributio Bit/Smiles Feature Structure -1143715940	Top features for positive contribution Bit/Smiles Feature Structure Score -1143715940 0.095		

C₂₆H₂₁Cl₂N₅O₃S

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

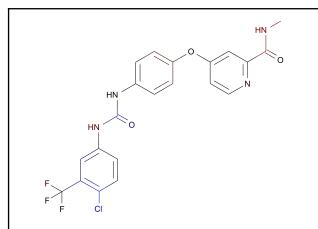
Prediction: 0.0644
Unit: g/kg_body_weight

Mahalanobis Distance: 8.99

Mahalanobis Distance p-value: 0.00146

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	RESERPINE	C.I.PIGMENT RED 23	COUMAPHOS	
Structure	O E L O O O O O O O O O O O O O O O O O	OF NAMES OF STREET		
Actual Endpoint (-log C)	6.13118	2.30052	5.60537	
Predicted Endpoint (-log C)	4.38304	3.55333	4.15004	
Distance	0.682	0.827	0.915	
Reference	NCI/NTP TR-193	NCI/NTP TR-411	NCI/NTP TR-96	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.6115. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

Feature Contribution				
Top features	for positive contribution	n		
Bit/Smiles	Feature Structure	Score		
-1143715940	[*]C1=[*][*]C(=[*])S1	0.095		
	Top features	Bit/Smiles Feature Structure -1143715940	Top features for positive contribution Bit/Smiles Feature Structure Score -1143715940 0.095	

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

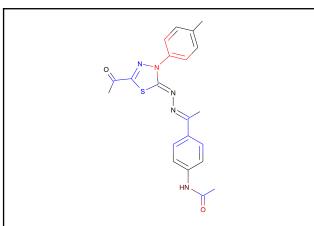
Prediction: 0.0885

Unit: g/kg_body_weight
Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Simila	ar Compounds		
Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3
Structure	HO O NH2 NH2 O S O O O O O O O O O O O O O O O O O	НО	NH NH
Actual Endpoint (-log C)	4.04236	2.20184	2.77703
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195
Distance	0.741	0.780	0.799
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

ribution		
Top features for positive contribution		
Bit/Smiles	Feature Structure	Score
-885550502	N	0.115
	Bit/Smiles	Top features for positive contribution Bit/Smiles Feature Structure -885550502

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

C₂₁H₂₁N₅O₂S

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

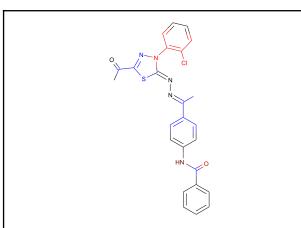
Model Prediction

Prediction: 0.00165
Unit: g/kg_body_weight
Mahalanobis Distance: 9.37

Mahalanobis Distance p-value: 4.04e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Simila	r Compounds		
Name	PENICILLIN VK	OCHRATOXIN	SULFISOOXAZOLE
Structure	O NH	OH MANH HONNER CI	H ₂ N O N N N N N N N N N N N N N N N N N N
Actual Endpoint (-log C)	2.54455	6.28396	2.82494
Predicted Endpoint (-log C)	3.9702	5.12358	3.0705
Distance	0.812	0.841	0.905
Reference	NCI/NTP TR-336	NCI/NTP TR-358	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 2. OPS PC6 out of range. Value: -2.7424. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 3. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 4. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 5. Unknown FCFP 2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Conti	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	332760439	[*]N([*])[c](:[cH] ² [*]):[cH]:[*]	0.672	

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 9.28e-005
Unit: g/kg_body_weight
Mahalanobis Distance: 9.54

Mahalanobis Distance p-value: 2.35e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	ar Compounds		
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH MANH CI HO WAY THE MAN HO WAY THE	O NH O NH O NH O NH O NH	H ₂ N O O O O O O O O O O O O O O O O O O O
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.912	1.169	1.199
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 489.98. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -3.4295. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. OPS PC10 out of range. Value: 2.8007. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 6. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 8. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]\N1[*]

Feature Cont	ribution		
	Top features	for positive contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score

 $C_{26}H_{23}N_5O_2S$

Molecular Weight: 469.55811

ALogP: 5.231
Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.000884
Unit: g/kg_body_weight
Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 1.4e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds		
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	OH MANUTURE OF THE PARTY OF THE	H ₂ N O S N T H	O NH TA S
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.946	1.128	1.134
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 469.56. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC6 out of range. Value: -3.2324. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 5. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 7. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Contribution

	Top features	s for positive contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
	-		•

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883
Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 7.5e-005
Unit: g/kg_body_weight
Mahalanobis Distance: 10

Mahalanobis Distance p-value: 5.06e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	r Compounds		
Name	OCHRATOXIN	PENICILLIN VK	PROBENECID
Structure	OH MANH OH HO WALL OF THE WALL	O H TES	OH O S O O
Actual Endpoint (-log C)	6.28396	2.54455	2.85333
Predicted Endpoint (-log C)	5.12358	3.9702	2.4258
Distance	1.000	1.239	1.326
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-395

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 520. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC3 out of range. Value: 5.2566. Training min, max, SD, explained variance: -4.6235, 5.1158, 1.773, 0.0972.
- 5. OPS PC5 out of range. Value: -3.8416. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 6. OPS PC10 out of range. Value: 2.749. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 7. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 8. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 9. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Cont		f	
	l op teatures	for positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score

 $C_{26}H_{21}CI_2N_5O_3S$

Molecular Weight: 554.44763

ALogP: 6.547
Rotatable Bonds: 8

Acceptors: 8
Donors: 1

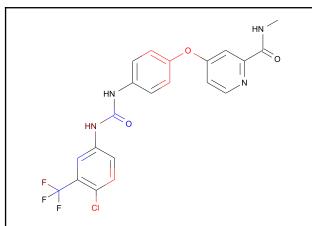
Model Prediction

Prediction: 5.17e-005
Unit: g/kg_body_weight
Mahalanobis Distance: 10.3

Mahalanobis Distance p-value: 2.23e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Simila	r Compounds		
Name	OCHRATOXIN	PENICILLIN VK	PROBENECID
Structure	OH MANUAL CI	O NH PS	OH O S O O
Actual Endpoint (-log C)	6.28396	2.54455	2.85333
Predicted Endpoint (-log C)	5.12358	3.9702	2.4258
Distance	1.059	1.313	1.396
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-395

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 554.45. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC3 out of range. Value: 5.4618. Training min, max, SD, explained variance: -4.6235, 5.1158, 1.773, 0.0972.
- 5. OPS PC5 out of range. Value: -3.8598. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 6. OPS PC10 out of range. Value: 2.6215. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 7. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 8. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 9. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Feature Cont		f	
	l op teatures	for positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.000918
Unit: g/kg_body_weight
Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	OH O	H ₂ N O N N N N N N N N N N N N N N N N N N	O NH Try
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.758	0.997	1.159
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				

C₂₁H₂₁N₅O₂S

Molecular Weight: 407.48873

ALogP: 3.566 Rotatable Bonds: 5

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.663

Unit: g/kg_body_weight Mahalanobis Distance: 23.8

Mahalanobis Distance p-value: 1.88e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	NAPHTHALIMIDE; N- HYDROXY-; O;O-DIETHYL PHOSPHOROTHIOATE	ACENOCOUMARIN	METHYL ORANGE; SODIUM SALT (Na STRIPPED)	
Structure		O NON	OH N N	
Actual Endpoint (-log C)	2.864	2.838	3.707	
Predicted Endpoint (-log C)	3.38692	3.3152	2.64236	
Distance	0.625	0.627	0.636	
Reference	TXAPA9 21;315;72	29ZVAB -;3;69	85JCAE -;1306;86	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP 2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

2.40947

NIIRDN 6:609:82

0.658

C₂₅H₂₀CIN₅O₂S

Molecular Weight: 489.97659

ALogP: 5.409 Rotatable Bonds: 6

Acceptors: 7
Donors: 1

Model Prediction

Prediction: 0.703

Unit: g/kg_body_weight Mahalanobis Distance: 23.8

Mahalanobis Distance p-value: 1.14e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sillinar Compounds			
Name	TALNIFLUMATE	ACEMETACIN	bis-OXATIN ACETATE
Structure	H H N N N N N N N N N N N N N N N N N N	OH CI	HN
Actual Endpoint (-log C)	1.538	4.235	1.717

Model Applicability

Predicted Endpoint (-log

Distance

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

3.39415

ARZNAD 30:1398:80

0.637

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]

FRPSAX 36:372:81

2.82541

0.637

- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

 $C_{26}H_{23}N_{5}O_{2}S$

Molecular Weight: 469.55811

ALogP: 5.231 Rotatable Bonds: 6

Acceptors: 7 Donors: 1

Model Prediction

Prediction: 0.457

Unit: g/kg_body_weight Mahalanobis Distance: 23.7

Mahalanobis Distance p-value: 5.01e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	TALNIFLUMATE	ACEMETACIN		
Structure				

Name	TALNIFLUMATE	ACEMETACIN	bis-OXATIN ACETATE
Structure	H H	OH OH	HN HN
Actual Endpoint (-log C)	1.538	4.235	1.717
Predicted Endpoint (-log C)	2.82541	3.39415	2.40947
Distance	0.622	0.625	0.628
Reference	FRPSAX 36;372;81	ARZNAD 30;1398;80	NIIRDN 6;609;82

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- All properties and OPS components are within expected ranges. 1.
- Unknown ECFP 2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*] 2.
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*] 4.
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1 6.
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- Unknown FCFP 6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*] 8.
- Unknown FCFP 6 feature: 580960234: [*]C(=NN=[*])[*] 9.
- Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*] 10.

Feature Contribution

Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				
			-	

C₂₆H₂₂CIN₅O₃S

Molecular Weight: 520.00258

ALogP: 5.883 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

Prediction: 0.903

Unit: g/kg_body_weight
Mahalanobis Distance: 24.6

Mahalanobis Distance p-value: 8.56e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	RESERPINE	ACEMETACIN	NICARDIPINE	
Structure	O THE STATE OF THE	OH CI	O-STATE OF STATE OF S	
Actual Endpoint (-log C)	3.161	4.235	3.176	
Predicted Endpoint (-log C)	2.72801	3.39415	3.41318	
Distance	0.721	0.726	0.751	
Reference	PSSCBG 11;555;80	ARZNAD 30;1398;80	ARZNAD 35;915;85	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
 Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

 $C_{26}H_{21}CI_2N_5O_3S$

Molecular Weight: 554.44763

ALogP: 6.547 Rotatable Bonds: 8

Acceptors: 8
Donors: 1

Model Prediction

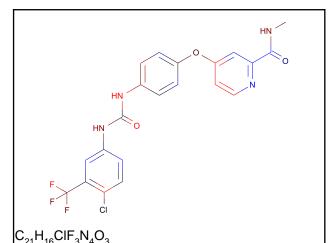
Prediction: 0.897

Unit: g/kg_body_weight Mahalanobis Distance: 24.8

Mahalanobis Distance p-value: 7.55e-030

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	RESERPINE	ANAPREL	ACEMETACIN	
Structure	O TA		OH OH	
Actual Endpoint (-log C)	3.161	2.803	4.235	
Predicted Endpoint (-log C)	2.72801	2.99154	3.39415	
Distance	0.737	0.748	0.790	
Reference	PSSCBG 11;555;80	NIIRDN 6;898;82	ARZNAD 30;1398;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]\N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP 6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Prediction: 0.823

Unit: g/kg_body_weight
Mahalanobis Distance: 21

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE	
Structure	Z H O O	CI NH	OH OH	
Actual Endpoint (-log C)	2.088	5.006	1.946	
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395	
Distance	0.697	0.703	0.721	
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[cH]:[*]
 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score