One-pot synthesis of tetrahydropyrimidinecarboxamides enabling In Vitro anticancer activities: A combinative study with clinically relevant brain-penetrant drugs

Dipti B. Upadhyay^{a,#}, Joaquina Nogales^{b,#}, Jaydeep A. Mokariya^a, Ruturajsinh M. Vala^a, Vasudha Tandon^b, Sourav Banerjee^{b,*}, Hitendra M. Patel^{a,*}

^a Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India

^b Department of Cellular & Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom

contributed equally

* Corresponding authors: Hitendra M. Patel, Email: <u>hm_patel@spuvvn.edu</u>

Sourav Banerjee, Email: <u>s.y.banerjee@dundee.ac.uk</u>

Sr. No.	Content	Page No.
1	4f does not induce apoptosis in cancer cells	2
2	kinase inhibitory activity Figure	2
3	¹ H-NMR and ¹³ C{ ¹ H}-NMR spectra of compound 4a-4t	3-23
4	LCMS of compound 4a-4t	23-28

Table of Contents

GBM6: AnnexinV-FITC + bright field

Figure S1:4f at 25 μ M does not induce apoptosis in GBM6 after 16 hr treatment. Images are superimposed bright field with FITC fluorescent channels. Crenolanib treatment is used as control for apoptosis induction.

Figure S2: Kinase profiling of 4f at 10 μ M was carried out against the panel of 139 kinases at the International Centre for Protein Kinase Profiling (http://www.kinase-screen.mrc.ac.uk/).

Copies of ¹H NMR and ¹³C{¹H}- NMR spectra for compound 4a-4ab

Figure S4. ¹³C NMR spectrum of compound 4a at 150 MHz in DMSO-d6

220 210 200 110 100 f1 (ppm) 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 ò -10 -20

Figure S6. ¹³C NMR spectrum of compound 4b at 150 MHz in DMSO-d6

Figure S7. ¹H NMR spectrum of compound 4c at 400 MHz in DMSO-d6

Figure S25. ¹H NMR spectrum of compound 4I at 400 MHz in DMSO-d6

Figure S27. ¹H NMR spectrum of compound 4m at 400 MHz in DMSO-d6

Figure S43. HRMS of compound 4a

Figure S44. LCMS of compound 4b

Figure S45. LCMS of compound 4c

Figure S46. LCMS of compound 4d

Figure S47. LCMS of compound 4e

Figure S48. LCMS of compound 4f

Figure S50. LCMS of compound 4h

Figure S51. LCMS of compound 4i

Figure S52. LCMS of compound 4j

Figure S54. LCMS of compound 4I

Figure S55. LCMS of compound 4m

Figure S56. LCMS of compound 4n

Figure S58. LCMS of compound 4p

Figure S59. LCMS of compound 4q

Figure S60. LCMS of compound 4r

Figure S62. LCMS of compound 4t