Supporting Information

<u>to</u>

Ruthenium Complex Based Nanocomposite Film with Enhanced and Selective

Electrochemical Sensing of Bifenthrin Pesticide

Sanjeev Bhandari^a, Bhaskar Sen^b, Snehadrinarayan Khatua^b, L. Robindro Singh^c, Vijay Singh

Parihar^{d*}, Mrityunjoy Mahato^{a*}

*To whom correspondence should be addressed:

^{*a*}Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University, Shillong, Meghalaya, 793022, India, Email: mrityunjoyedu@gmail.com

^bCentre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India

^cDepartment of Nanotechnology, School of Technology, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.

^dBiomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland, Email: vijay.parihar@tuni.fi

¹H NMR, ¹³C NMR, and ESI-MS spectrum of RuPo complex

ESI-MS: m/z calculated for $[C_{36}H_{24}F_6N_6O_2PRu]^+$ 818.65; found: 818.67; $[C_{36}H_{23}N_6O_2Ru]^+$ 672.68; found: 672.68. 1H NMR (400 MHz, CD₃CN): δ (ppm) = 9.86 (s, 1H), 8.57 (dd, J = 8.2, 1.3 Hz), 8.54 (dd, J = 8.3, 1.3 Hz, 1H), 8.28 (s, 1H), 8.22 (d, J = 1.4 Hz, 2H), 8.15 (dd, J = 5.3, 1.3 Hz, 1H), 8.01 (dd, J = 5.2, 1.2 Hz, 1H), 7.64 (dd, J = 8.2, 5.3, 1H), 7.58 (m, 2H), 6.99 (d, J = 6.1, 1H). 13C NMR (100 MHz, CD₃CN): δ (ppm) = 162.8 (1C), 154.0 (1C), 153.8 (1C), 153.8 (1C), 149.7 (1C), 149.3 (1C), 149.1 (1C), 137.2 (2C), 131.9 (1C), 131.8 (1C), 129.0 (1C), 128.9 (1C), 126.7 (1C), 126.6 (1C), 123.9 (1C), 121.6 (1C), 111.1 (1C).

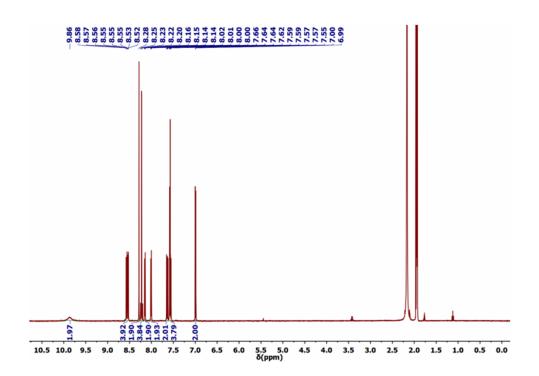


Fig. S1. ¹H NMR spectrum of RuPo in CD₃CN.

Fig. S2. ¹³C NMR spectrum of RuPo in CD₃CN.

Fig. S3. ESI-MS spectrum of RuPo in CH₃CN.

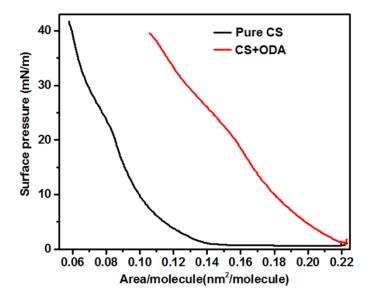


Fig. S4. Isotherm of pure CS and CS+ODA.

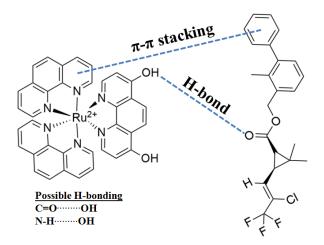
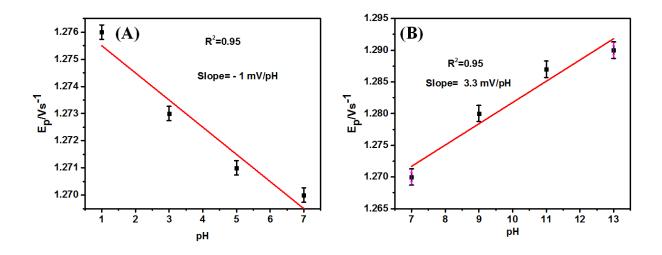



Fig. S5. Schemantic mechanism for interaction of the RuPo with the BF pesticide.

Fig. S6. (A) Plot of $E_p(V/s)$ versus pH (1-7), (B) Plot of $E_p(V/s)$ versus pH (7-13).

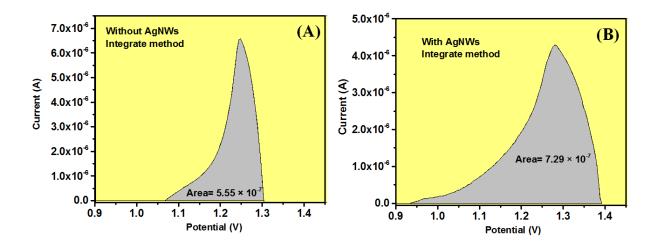


Fig. S7. Area of the DPV curve for (A) without AgNWs, (B) with AgNWs.

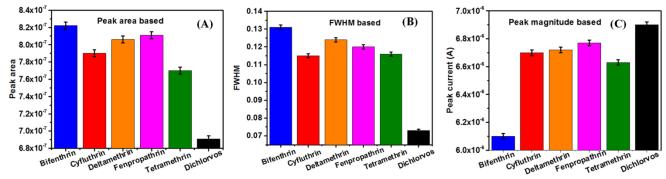
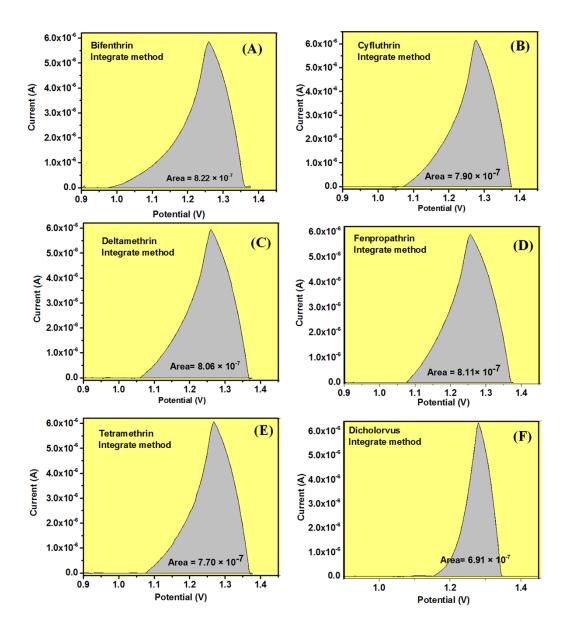



Fig. S8. Bar plot of different pesticide versus (A) peak area based, (B) FWHM based, (C) peak

magnitude based.

•

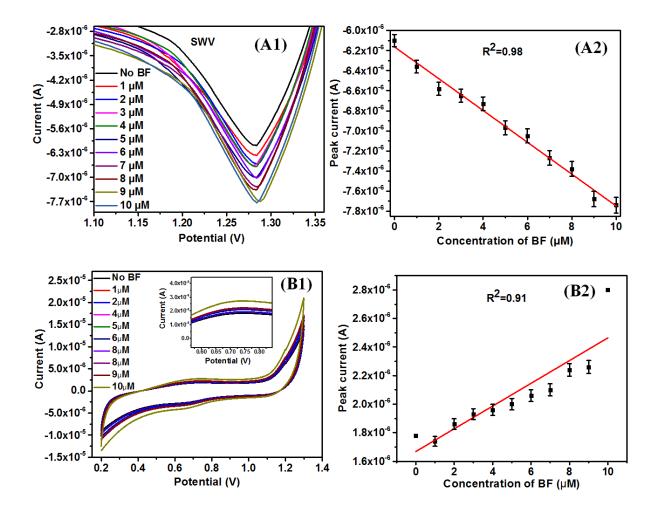


Fig. S9. Peak area of the DPV curve for different pesticides (A-F).

Fig. S10. (A1) SWV graph of composite modified Pt electrode with different concentration of bifenthrin, (A2) Calibration curve with analyte (bifenthrin pesticide) concentrations vs peak current (B1) CV graph of composite modified Pt electrode with different concentration of bifenthrin, (B2) Calibration curve with analyte (bifenthrin pesticide) concentrations vs peak current

Table S1: Table for FTIR peak assignment of the components and composite LB film.

S. No	Peak	Functional group identification	References
1	843	P-F stretching of RuPo	[41]
2	1426	P-F stretching of RuPo	[41]
3	1523	N-H stretching of chitosan	[54]

4	3360	O-H stretching of chitosan	[89]
5	3370	N-H stretching of pure	[90]
		ODA	
6	3373	N-H stretching of ODA in	[90]
		composite	
7	3380	N-H stretching of ODA	[88]
8	3386	N-H stretching of RuPo	[91]
9	3443	N-H stretching of RuPo	[42]
10	3742	–OH group of chitosan	[91]

•