Design, synthesis, molecular docking, and dynamics studies of novel thiazole-Schiff base derivatives containing fluorene moiety with the assessment of their antimicrobial and antioxidant activity

Sumita Saznin Marufa,^a Tasnim Rahman,^a Mohammad Mostafizur Rahman,^{**a} Md. Mizanur Rahman,^a Samira Jarin Khan,^a Rownok Jahan,^a Hiroshi Nishino,^b Mohammad Sayed Alam,^{*a} Md. Aminul Haque,^{***a}

^aDepartment of Chemistry, Jagannath University, Dhaka 1100, Bangladesh

^aDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan

** Corresponding author.

E-mail address: mostafiz@chem.jnu.ac.bd (M.M. Rahman).

* Corresponding author.

E-mail address: <u>msalam@chem.jnu.ac.bd</u> (M.S. Alam).

*** Corresponding author.

E-mail address: <u>amin2k12@chem.jnu.ac.bd</u> (M.A. Haque).

ORCID

Md. Aminul Haque. https://orcid.org/0000-0001-5514-1597

Contents

1. IR, ¹H NMR, and HRMS spectra of compounds **1a**, **2a-2r**.

2. Concentration-inhibition curve to determine IC₅₀ values of **2a-2r** and ascorbic acid.

Fig. S1. IR spectrum of 1a.

Fig. S2. ¹H NMR spectrum of 1a.

Note : Acetone+NBA Inlet : Direct RT : 4.38 min	Ion Mode : FAB+ Scan#: (16,21)	•
Elements : C 100/0, Mass Tolerance.	H 100/0, N 4/2, S 2/0 : 20ppm, 10mmu if m/z < 500, 20m	mmu if m/z > 1000
Unsacuración (0.5.)	0.5 - 50.0	•
Observed m/z Int%	Err[ppm / mmu] U.S. Composit	ion
20010955 1119	+21.7 / +5.8 15.5 C 18 H 1	LON3
	-3.4 / -0.9 7.5 C 12 H 1	L8 N 3 S 2

Fig. S3. HRMS spectrum of 1a.

Fig. S4. IR spectrum of 1b.

Fig. S5. ¹H NMR spectrum of 1b.

[Elemental Composit	ion].	-1	Page: 1
Data : nishino2624		Date : 02-Nov-2021 14:45	······
Note · Acetone+NBA	10		
Inlet : Direct		Ion Mode : FAB+	
RT : 4.50 min		Scan#: (16,22)	
Elements : C 100/0,	H 100/0, N 4/2, S	5 2/0	
Mass Tolerance	: 20ppm, 10mmu if	m/z < 500, 20mmu if $m/z > 1000$	
Unsaturation (U.S.)	: -0.5 - 50.0		
Observed m/z Int%	Brr [pom / mmu]	U.S. Composition	
282.1073 44.6	-29.7 / -8.4	15.0 C 20 H 14 N 2	
	+14.9 / +4.2	15.5 C 19 H 12 N 3	
	+3.0 / .+0.8	11.5 C 16 H 16 N 3 S	
	-9.0 / -2.5	7.5 C 13 H 20 N 3 S 2	

Fig. S6. HRMS spectrum of 1b.

Fig. S7. IR spectrum of 2a.

Fig. S8. ¹H NMR spectrum of 2a.

[Elemental Composi Data : nishino2518 Sample: TR-1(e)/Nis Note : Acetone+NBA Inlet : Direct RT : 4.63 min Elements : C 100/0, Mass Tolerance Unsaturation (U.S.)	tion] Date : 20-Jul-2021 20:23 hino Ion Mode : FAB+ Scan#: (16,23) H 100/0, N 4/2, S 2/0 : 20ppm, 10mmu if m/z < 500, 20mmu if m/z : -0.5 - 50.0	Page: 1
Observed m/z Int% 319.1147 64.4	Err[ppm / mmi] U.S. Composition -27.6 / -8.8 17.5 C 23 H 15 N 2 +11.8 / +3.8 18.0 C 22 H 13 N 3 +1.2 / +0.4 14.0 C 19 H 17 N 3 S -9.3 / -3.0 10.0 C 16 H 21 N 3 S 2 +30.1 / +9.6 10.5 C 15 H 19 N 4 S 2	·· ·
320.1212 71.7	+7.7 / +2.5 17.5 C 22 H 14 N 3 -2.8 / -0.9 13.5 C 19 H 18 N 3 S -13.3 / -4.3 9.5 C 16 H 22 N 3 S 2 +25.9 / +8.3 10.0 C 15 H 20 N 4 S 2	

Fig. S9. HRMS spectrum of 2a.

Fig. S10. IR spectrum of 2b.

Fig. S11. ¹H NMR spectrum of 2b.

[Elemental Composition] Data : nishino2514 Date : 20-Jul-2021 17:50 Sample: TR-1(b)/Nishino	Page: 1
Note : Acetone+NBA+NaI	
Infect : Direct Ion Mode : FAB+	
RT: 1.13 min Scan#: (3,8)	
Elements : C 100/0, H 100/0, O 2/0, N 4/2, S 2/0, Na 1/1	
Mass Tolerance : 20ppm, 10mmu if $m/z < 500$, 20mmu if $m/z > 1000$	
Unsaturation $(U.S.)$: $-0.5 - 50.0$	
Observed m/z Int% Err[ppm / mmu] U.S. Composition	
370.1021 100.0 -16.6 / -6.2 18.0 C 24 H 15 O N 2 Na	
+17.3 / +6.4 18.5 C 23 H 13 O N 3 Na	
-25.7 / -9.5 14.0 C 21 H 19 O N 2 S Na	
(2, 1, 7, 7, 2, 3, 1, 4, 5, 6, 2, 1, 1, 7, 5, 1, 2, 5, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
+6.2 / +5.0 14.5 C 20 H 1/0 N 3 5 Na	
-0.97 -0.3 10.5 C 17 H 21 O N 3 S 2 Na	

Fig. S12. HRMS spectrum of 2b.

Fig. S13. IR spectrum of 2c.

Fig. S14. ¹H NMR spectrum of 2c.

[Elemental Composition] Data : nishino2622 Sample: TR-1c/Nishino	Date	: 02-Nov-2021 14:25	Page: 1
Note : Acetone+NBA+NaI			
Inlet : Direct .	Ion M	ode : FAB+	
RT : 4.75 min	Scan#	: (18,22)	
Elements : C 100/0, H 100/0,	O 3/1, N 4/2,	S 2/0, Na 1/1	
Mass Tolerance : 20ppm,	10mmu if m/z .	< 500, 20mmu if m/z > 1000	•
Unsaturation (U.S.) : -0.5 -	50.0		
Observed m/z Int? Err[ppm	/ mmu] U.S.	Composition	
400.1101 14.4 -21.6	/ -8.6 18.0	C 25 H 17 O 2 N 2 Na	
+9.9	/ +3.9 18.5	C 24 H 15 O 2 N 3 Na	
• +1.4	/ +0.6 14.5	C 21 H 19 O 2 N 3 S Na	
-7.0	/ -2.8 10.5	C 18 H 23 O 2 N 3 S 2 Na	
+24.4	/ +9.8 11.0	C 17 H 21 O 2 N 4 S 2 Na	n seren seren se

Fig. S15. HRMS spectrum of 2c.

Fig. S16. IR spectrum of 2d.

Fig. S17. ¹H NMR spectrum of 2d.

[Elemental Composi Data : nishino2516 Sample: TR-1(d)/Nis	tion]	Date : 20-Jul-2021 20:02	Page: 1
Note : Acetone+NBA			
Inlet : Direct		Ion Mode : FAB+	
RT : 4.25 min	W 100/0 0 0/1	Scan#: (15,21)	
Mass Tolerance	H 100/0, O 3/1, N	4/2, $52/0m/z < 500 20mmu if m/z$	1000
Unsaturation (U.S.)	: -0.5 - 50.0	m/2 < 500, $20mma$ II $m/2$	2 1000
Observed m/z Int%	Err[ppm / mmu]	U.S. Composition	
378.1281 72.7	-23.0 / -8.7	18.0 C 25 H 18 O 2 N 2	
	+10.3 / +3.9	18.5 C 24 H 16 O 2 N 3	-
	+1.4 / +0.5	14.5 C 21 H 20 O 2 N 3	5
	-7.5 / -2.9	10.5 C 18 H 24 O 2 N 3 1	5 2
	+25.77 +9.7	11.0 C 1/ H 22 O 2 N 4 3	52

Fig. S18. HRMS spectrum of 2d.

Fig. S19. IR spectrum of 2e.

Fig. S20. ¹H NMR spectrum of 2e.

[Elemental Composition]	age: 1
Data : nishino2865 Date : 09-Jun-2022 17:03	Ŷ
Sample: TR-1L/Nishino	
Note : Acetone+NBA	
Inlet : Direct Ion Mode : FAB+	
RT : 1.75 min Scan#: (5,11)	e, de
Elements : C 100/0, H 100/0, O 3/1, N 4/2, S 2/0	
Mass Tolerance : 20ppm, 10mmu if m/z < 500, 20mmu if m/z > 1000	
Unsaturation $(U.S.)$: $-0.5 - 50.0$	
	20 C
Observed m/z Int% Err[ppm / mmu] U.S. Composition	
436.1117 100.0 -21.8 / -9.5 24.0 C 30 H 16 O 2 N 2	*
+7.0 / +3.1 24.5 C 29 H 14 O 2 N 3	
-0.7 / -0.3 20.5 C 26 H 18 O 2 N 3 S	11
-8.4 / -3.7 16.5 C 23 H 22 O 2 N 3 S 2	
+20.4 / +8.9 17.0 C 22 H 20 O 2 N 4 S 2	• 197

Fig. S21. HRMS spectrum of 2e.

Fig. S22. IR spectrum of 2f.

Fig. S23. ¹H NMR spectrum of 2f.

Inlet : Direct RT : 1.88 min	Ion Mode : FAB+ Scan#: (7,10)
Elements : C 100/0,	H 100/0, O 3/1, N 4/2, S 2/0
Mass Tolerance	: 20ppm, 10mmu if $m/z < 500$, 20mmu if $m/z > 1000$
Unsaturation (U.S.)	: -0.5 - 50.0
Observed m/z Int%	Err[ppm / mmu] U.S. Composition
450.1266 96.6	+5.1 / +2.3 24.5 C 30 H 16 O 2 N 3
	-2.4 / -1.1 20.5 C 27 H 20 O 2 N 3 S
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-9.9 / -4.4 16.5 C 24 H 24 O 2 N 3 S 2
	+18.1 / +8.1 17.0 C 23 H 22 O 2 N 4 S 2

Fig. S24. HRMS spectrum of 2f.

Fig. S25. IR spectrum of 2g.

Fig. S26. ¹H NMR spectrum of 2g.

[Elemental Composition]	Page: 1
Data : nishino2861	Date : 09-Jun-2022 16:17
Sample: TR-1j/Nishino	
Note : Acetone+NBA	
Inlet : Direct	Ion Mode : FAB+
RT : 1.13 min	Scan#: (4,7)
Elements : C 100/0, H 100/0, N 4/2,	S 2/0
Mass Tolerance : 20ppm, 10mmu	if $m/z < 500$, 20mmu if $m/z > 1000$
Unsaturation (U.S.) : -0.5 - 50.0	
Observed m/z Int* Err[ppm / mmu]	U.S. Composition
368.1220 56.9 -25.3 / -9.3	21.0 C 27 H 16 N 2
+8.9 / +3.3	21.5 C 26 H 14 N 3
-0.3 / -0.1	17.5 C 23 H 18 N 3 S
-9.4 / -3.5	13.5 C 20 H 22 N 3 S 2
+24.7 / +9.1	14.0 C 19 H 20 N 4 S 2

Fig. S27. HRMS spectrum of 2g.

Fig. S28. IR spectrum of 2h.

Fig. S29. ¹H NMR spectrum of 2h.

Fig. S30. HRMS spectrum of 2h.

Fig. S31. IR spectrum of 2i.

Fig. S32. ¹H NMR spectrum of **2i**.

Observed m/z Int% Err[ppm / mmu] Composition U.S. 398.1311 50.6 +4.4 / +1.7 21.5 C 27 H 16 O N 3 -4.1 / -1.6 17.5 C 24 H 20 O N 3 S -12.6 / C 21 H 24 O N 3 S 2 -5.0 13.5 C 20 H 22 O N 4 S 2 +19.0 / +7.6 14.0

Fig. S33. HRMS spectrum of 2i.

Fig. S34. IR spectrum of 2j.

Fig. S35. ¹H NMR spectrum of 2j.

[Elemental Composition] Data : nishino2857 Date : 09-Jun-2022 15:19	Page: 1
Sample: TR-In/Nishino Note : Acetone+NBA	
Inlet : Direct Ion Mode : FAB+	
RT : 2.50 min Scan#: $(9,13)$	
Elements : C 100/0, H 100/0, O 3/1, N 5/3, S 2/0 Mass Tolerance : 20ppm, 10mmu if $m/z < 500$, 20mmu if $m/z > 1000$	
Unsaturation (U.S.) : -0.5 - 50.0	
Observated m/g Tatk Fare and / mmul II C Composition	
413.1068 22.0 -23.3 / -9.6 22.0 C 27 H 15 O 2 N 3	
+7.1 / +2.9 22.5 C 26 H 13 O 2 N 4	
-1.1 / -0.4 18.5 C 23 H 17 O 2 N 4 S	
+21.2 / +8.8 15.0 C 19 H 19 O 2 N 5 S 2	

Fig. S36. HRMS spectrum of 2j.

Fig. S37. IR spectrum of 2k.

Fig. S38. ¹H NMR spectrum of 2k.

[Elemental Composition]	e: 1
Data : nisnino2854 Date : 09-Jun-2022 14:55	
Note · Acetone+NRA	
Inlet : Direct Ion Mode : FAB+	ौत
RT : 1.38 min Scan#: (5,8)	
Elements : C 100/0, H 100/0, O 3/1, N 5/3, S 2/0	
Mass Tolerance : 20ppm, 10mmu if $m/z < 500$, 20mmu if $m/z > 1000$	
Unsaturation $(U.S.)$: -0.5 - 50.0	
Observed m/z Int% Err[ppm / mmu] U.S. Composition	
413.1080 100.0 -20.3 / -8.4 22.0 C 27 H 15 O 2 N 3	
+10.1 / +4.2 22.5 C 26 H 13 O 2 N 4	
+2.0 / +0.8 18.5 C 23 H 17 O 2 N 4 S	
-6.2 / -2.6 14.5 C 20 H 21 O 2 N 4 S 2	
	1

Fig. S39. HRMS spectrum of 2k.

Fig. S40. IR spectrum of 2l.

Fig. S41. ¹H NMR spectrum of 2l.

[Elemental Comp	osition]				Page: 1
Data : nishino26	531		Date :	04-Nov-2021 14:41	
Sample: TR-lf/Nig	shino				
Note : Acetone+NE	A				
Inlet · Direct	.		Ton No	de · FAR+	
RT : 1 50 min			Scanit.	(5 9)	
Flements · C 100	O H 100/0	N 4/2	C1 3/1	\$ 2/0	
Magg Tolerange	200000	100000 1	£	52/0	
Impaturation /11		50 0	1 1192 -	500, 20mmi 11 my 2 > 1000	
onsacuración (o.a	5.7 : -0.5 -	50.0			
Observed m/z Int	Errinn	/	II S	Composition	
435 0366 95	6 -16 A	/ _7 1	26 5	C 28 H 8 N A CI	
155.0500	-20 6	1	21 5	C 27 H 13 N 2 C1 2	
	-20.0	1 13 6	22.0	C 26 W 11 N 2 Cl 2	
	10.5	/ 10.2	10 0	C 22 H 15 N 2 Cl 2 C	
	-7.0	1 -2 1	14.0		
	-1.2	-3.1	14.6	C 10 H 17 N A CI 2 8 2	
	17 6	1 7 6	14.5		
	+17.5	/ +/.0	9.5	C 18 H 22 N 2 CI 3 S 2	
436 0420 100	0 -22 0	1 -9'6	26.0	C 28 H 9 N 4 C	
. 15010120 2001	+2 7	1 1 2	21 5	C 26 H 12 N 3 Cl 2	
	-5.1	1 -2 2	17 5		
	+19 6	1 -0 -6	12.0		
	-12.0	-5.5	13.0	C 20 H 20 N 2 Cl 3 5	
•	-12.0	-5.0	14.0		
	+18.0	1 72.0	14.0		
	+11.8	+5.2	9.0	C 10 R 23 N 2 CI 3 5 2	

Fig. S42. HRMS spectrum of 2l

Fig. S43. IR spectrum of 2m.

Fig. S44. ¹H NMR spectrum of 2m.

[Elemental Composition] Page: 1
Data : nishino2848 Date : 09-Jun-2022 11:18
Sample: TR-2j/Nishino
Note : Acetone+NBA
Inlet : Direct Ion Mode : FAB+
RT : 1.38 min Scan#: (5,8)
Elements : C 100/0, H 100/0, N 4/2, S 2/0
Mass Tolerance : 20ppm, 10mmu if $m/z < 500$, 20mmu if $m/z > 1000$
Unsaturation (U.S.) : -0.5 - 50.0
Observed m/z Int% Err[ppm / mmu] U.S. Composition
381.1304 75.4 -23.1 / -8.8 21.5 C 28 H 17 N 2
+9.9 / +3.8 22.0 C 27 H 15 N 3
+1.1 / +0.4 18.0 C 24 H 19 N 3 S
-7.8 / -3.0 14.0 C 21 H 23 N 3 S 2
+25.2 / +9.6 14.5 C 20 H 21 N 4 S 2

Fig. S45. HRMS spectrum of 2m.

Fig. S46. IR spectrum of 2n.

Fig. S47. ¹H NMR spectrum of 2n.

Fig. S48. HRMS spectrum of 2n.

Fig. S49. IR spectrum of 20.

Fig. S50. ¹H NMR spectrum of 20.

[Elemental Composition]	· . ·	Page:	i
Data : nishino2846 Date : 09-Jun-2022 10:53			
Sample: TR-2i/Nishino	× •, -,		
Note : Acetone+NBA			
Inlet : Direct Ion Mode : FAB+	*		
RT : 1.38 min Scan#: (5,8)			
Elements : C 100/0, H 100/0, O 2/0, N 4/2, S 2/0			*
Mass Tolerance : 20ppm, 10mmu if m/z < 500, 20mmu if m/z >	> 1000		
Unsaturation (U.S.) : -0.5 - 50.0			
والمحادثة والمتحد المحادث والمتحد والمتحر والمحادث والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد	·		
Observed m/z Int% Err[ppm / mmu] U.S. Composition		4	
412.1470 85.2 +5.0 / +2.0 21.5 C 28 H 18 O N 3			
-3.2 / -1.3 17.5 C 25 H 22 O N 3 S			*
-11.4 / -4.7 13.5 C 22 H 26 O N 3 S 2	2 ×		
+19.1 / +7.9 14.0 C 21 H 24 O N 4 S 2	2		

Fig. S51. HRMS spectrum of 20.

Fig. S52. IR spectrum of 2p.

Fig. S53. ¹H NMR spectrum of 2p.

[Elemental Composition] Data : nishino2838	Page: 1 Date : 06-Jun-2022 14:11
Sample: TR-2n/Nishino	
Note : Acetone+NBA	
Inlet : Direct	Ion Mode : FAB+
RT : 1.75 min	Scan#: (6,10)
Elements : C 100/0, H 100/0, O 3/1, N	5/3, S 2/0
Mass Tolerance : 20ppm, 10mmu if	m/z < 500, 20mmu if $m/z > 1000$
Unsaturation (U.S.) : -0.5 - 50.0	
SPACE STREET	
Observed m/z Int% Err[ppm / mmu]	U.S. Composition
427,1233 43.9 -20.5 / -8.8	22.0 C 28 H 17 O 2 N 3
+8.9 / +3.8	22.5 C 27 H 15 O 2 N 4
+1, 1, -1, 0, 4	18 5 C 24 H 19 O 2 N 4 S
	14 = 0.21 + 22 + 0.2 + 4.5
	14.5 C 21 H 25 C 2 N 4 5 2
+22.6 / +9.7	15.0 C 20 H 21 O 2 N 5 S 2

Fig. S54. HRMS spectrum of 2p.

Fig. S55. IR spectrum of 2q.

Fig. S56. ¹H NMR spectrum of 2q.

I Premencar compost	tion]	*	•			Page: 1
Data : nishino2638		annaidh a	Date :	04-Nov-2021 16	5:38	
Sample: TR-2g/Nishi	no					
Note : Acetone+NBA						
Inlet : Direct			Ion Mo	de : FAB+		
RT : 5.50 min			Scan#:	(20,26)		
Elements : C 100/0,	H 100/0, C) 3/1, N	1 5/3,	S 2/0		
Mass Tolerance	: 20ppm, 1	LOmmu if	[m/z <	500, 20mmu if	m/z > 1000	
Unsaturation (U.S.)	: -0.5 - 5	50.0				
Observed m/z Int%	Err[ppm /	ແມ່ນ]	U.S.	Composition		
426.1159 32.4	-19.6 /	-8.3	22.5	C 28 H 16 O 2	N 3	
	+9.9 /	+4.2	23.0	C 27 H 14 O 2	N 4	
	+2.0 /	+0.9	19.0	C 24 H 18 O 2	N4S	
	-5.9 /	-2.5	15.0	C 21 H 22 O 2	N 4 S 2	
427.1223 27.4	-23.0 /	-9.8	22.0	C 28 H 17 O 2	N З	
	+6.4 /	+2.8	22.5	C 27 H 15 O 2	N4 ·	
				a		
	-1.5 /	-0.6	18.5	C 24 H 19 O 2	NAS	
	-1.5 /	-0.6	18.5	C 24 H 19 0 2 C 21 H 23 O 2	N 4 5 2	

Fig. S57. IR spectrum of 2q.

Fig. S58. IR spectrum of 2r.

Fig. S59. ¹H NMR spectrum of 2r.

ADCOF	1011 1							_			Page	: 1
The subscription Date : 04-NOV-2021 16:17												
NISHIH	0	*										
+NBA												
			ION MO	de : F	AB+					•		
			Scan#:	(5,10)							
.00/0,	H 100/0,	N 4/2, (Cl 3/1,	S 2/0								
(U.S.)	: 20ppm, : -0.5 -	10mmu if 50.0	6 m/z <	500,	20mm	u if	: m/	Z :	- 10	00		
int%	Err [ppm /	(ແກເມ]	u.s.	Compo	sitic	on						
00.0	-8.4 /	3.8	26.5	C 29	H 10	NA	Cl					
	-12.5 /	-5.6	21.5	C 28 1	H 15	N 2	2 C1	2				
	+15.5 /	+7.0	22.0	C 27	H 13	N 3	Cl	2				
	-15.9 /	-7.1	22.5	C 26	H 14	N 4	Cī.	ŝ				
a nan na ta	-20.0 /	-9.0	17.5	C 25	H 19	N 2	C1	2	S	×		
	+8.0 /	+3.6	18.0	C 24	H 17	N	čĩ	2	š		* - x	
	+0.5 /	+0.2	14.0	C 21	H 21	NJ	cī	2	S 2			
83.6	-16.2 /	-7.3	26.0	C 29	H 11	N4	c1					
	-20.3 /	-9.1	21.0	C 28 1	H 16	N 2	C1	2				
	+7.7 /	+3.5	21.5	C 27 1	H 14	N 3	Cl	2				
	+0.2 /	. +0.1	17.5	C 24 1	H 18	N 3	Cl	2	S			
	-7.3 /	-3.3	13.5	C 21 1	H 22	N 3	C1	2	S 2			
	+20.6 /	+9.3	14.0	C 20	H 20	N 4	CI	2	5 2			
	+16.6 /	+7.5	9.0	C 19	H 25	N 2	cî	จั	\$ 2			
	002635 /Nishin +NBA (U.S.) (U.S.) (U.S.) (nt% .00.0	No2635 (Nishino +NBA (U.S.) : -0.5 - (U.S.) : -0.5 -	No2635 (Nishino +NBA - 200/0, H 100/0, N 4/2, 0 - 20ppm, 10mmu if (U.S.) : -0.5 - 50.0 Ent% Err[ppm / mmu] .00.0 -8.4 / -3.8 -12.5 / -5.6 +15.5 / +7.0 -15.9 / -7.1 -20.0 / -9.0 +8.0 / +3.6 +0.5 / +0.2 83.6 -16.2 / -7.3 -20.3 / -9.1 +7.7 / +3.5 +0.2 /. +0.1 -7.3 / -3.3 +16.6 / +7.5	No2635 Date : *NISA Ion Mo *NBA Ion Mo : 20ppm, 10mmu if m/z <	No2635 Date : 04-No 'Nishino Ion Mode : F. Scan#: (5,10 .00/0, H 100/0, N 4/2, Cl 3/1, S 2/0 : 20ppm, 10mmu if m/z < 500,	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No2635 Date : 04-Nov-2021 16:1 'Nishino Ion Mode : FAB+ Scan#: (5,10) Scan#: (5,10) .00/0, H 100/0, N 4/2, Cl 3/1, S 2/0 : 20ppm, 10mmu if m/z < 500, 20mmu if m/	ho2635 Date : 04-Nov-2021 16:17 'Nishino Ion Mode : FAB+ scan#: (5,10) Scan#: (5,10) .00/0, H 100/0, N 4/2, Cl 3/1, S 2/0 : 20ppm, 10mmu if m/z < 500, 20mmu if m/z =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Date : 04-Nov-2021 16:17 Nishino =NBA Ion Mode : FAB+ Scan#: (5,10) 100/0, H 100/0, N 4/2, Cl 3/1, S 2/0 = : 20ppm, 10mmu if m/z < 500, 20mmu if m/z > 1000 (U.S.) : -0.5 - 50.0 Int% Err[ppm / mmu] U.S. Composition .00.0 -8.4 / -3.8 26.5 C 29 H 10 N 4 Cl -12.5 / -5.6 21.5 C 28 H 15 N 2 Cl 2 +15.5 / +7.0 22.0 C 27 H 13 N 3 Cl 2 -15.9 / -7.1 22.5 C 26 H 14 N 4 Cl S -20.0 / -9.0 17.5 C 25 H 19 N 2 Cl 2 S +8.0 / +3.6 18.0 C 24 H 17 N 3 Cl 2 S 2 *83.6 -16.2 / -7.3 26.0 C 29 H 11 N 4 Cl -20.3 / -9.1 21.0 C 28 H 16 N 2 Cl 2 S +0.5 / +0.2 14.0 C 21 H 21 N 3 Cl 2 S 2 *33.6 -16.2 / -7.3 26.0 C 29 H 11 N 4 Cl -20.3 / -9.1 21.0 C 28 H 16 N 2 Cl 2 +7.7 / +3.5 21.5 C 27 H 14 N 3 Cl 2 S -7.3 / -3.3 13.5 C 21 H 22 N 3 Cl 2 S 2 +0.6 / +7.5 9.0 C 19 H 25 N 2 Cl 3 S 2

Fig. S60. HRMS spectrum of 2r.

Fig. S61. Concentration-inhibition curves of synthesized compounds 2a-2r and ascorbic acid.