Supporting information

Green and efficient synthesis dibenzyl cyanamides and ureas with cyanamide as a block

Zhongjie Wang,^a Yu He,^a Fang Wang,^a Yan Wang,^a Hui Luo,^a Jianglong Wu,^{b,*} and Jinhui Yang^{a*}

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,

College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

^b School of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China.

* Corresponding authors. E-mail addresses: yang_jh@nxu.edu.cn, 1548696132@qq.com.

Table of contents	Page
1.General information	S2
2.General procedure for synthesis of compound 3-5	S2
3.Spectroscopic data for the products	S4
4.X-raySpectra of 3m , 3s , 4b	S14
5.References	S23
6.NMR spectra	S24

1. General information

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker AV-400/500 MHz NMR spectrometers instrument using CDCl₃ or DMSO-*d*₆ as solvent and Me₄Si as internal standard. High-resolution mass spectra (HRMS) (ESI) were obtained with a Bruker Daltonics APEX II 47e and quadrupole Orbitrap Elite (Q-Exactive) mass spectrometer. Cyanamide was purchased from Aladdin Company (China, purity: 95%) and other commercially available reagents were purchased from Tansoole Chemicals, Macklin Biochemical Technology and used as received. Column chromatography was carried out on a flash chromatographic system using silica gel, petroleum ether (60-90 °C) and ethyl acetate as eluent. For thin layer chromatography (TLC), silica gel plates precoated with GF-254 were used.

2. General procedure for synthesis of compound 3, 4, 5:

2.1 The General Procedure for the Synthesis of 3

To a 25 mL quartz tube was charged with enzyl bromide compounds 1 (0.44 mmol, 2.2 equiv.), cyanamide compound 2 (0.2 mmol), K_2CO_3 (0.6 mmol, 3.0 equiv.) and CH₃CN (5 mL). Then the mixture was stirred for 5 h under air atmosphere at 80 °C. Perform TLC testing every hour until the reaction is complete. After completion, distilled under reduced pressure to remove acetonitrile. Add water (10 mL) and ethyl acetate (10 mL) to extract and separate the phases. The mixture was extracted with ethyl acetate (10 mL × 3). The combined organic layers were dried with by Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether (1:20) to give *N*,*N*-dibenzylcyanamide compounds **3**.

2.2 The General Procedure for the Synthesis of 4

To a 25 mL quartz tube was charged with *N*,*N*-dibenzylcyanamide compounds **3** (0.2 mmol), hydrogen peroxide (0.24 mmol, 1.2 equiv., 30% aq.) and DMSO (3 mL). Then the mixture was stirred for 4 h under air atmosphere at room temperature. After completion, added water (10 mL) and ethyl acetate (10 mL) to extract and separate the phases. The mixture was extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried with by Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether (1:10) to give *N*,*N*-diphenylurea products **4**.

2.3 The General Procedure for the Synthesis of Derivatives 5a

To a 25 mL quartz tube was charged with 1,1-bis(2-bromobenzyl)urea compounds 4d (0.2 mmol), cuprous iodide (0.02 mmol, 0.1 equiv.), potassium *tert*-butoxide (0.6 mmol, 3.0 equiv.) and DMSO (2 mL). Then the mixture was stirred for 8 h under air atmosphere at 130 °C. After completion, added water (10 mL) and ethyl acetate (10 mL) to extract and separate the phases. The mixture was extracted with ethyl acetate (10 mL × 3). The combined organic layers were dried with by Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether (1:5) to give product **5a**.

2.4 Gram-scale synthesis of 3a, 4a

To a 100 mL flask was charged with (bromomethyl)benzene **1a** (22.0 mmol, 2.2 equiv., 3.74g), cyanamide **2** (10.0 mmol, 0.42g), K_2CO_3 (30.0 mmol, 3.0 equiv., 4.17g) and MeCN (25mL). Then the mixture was stirred for 5 h under air atmosphere at 80 °C. Perform TLC testing every hour until the reaction is complete. After completion, distilled under reduced pressure to remove acetonitrile. Add water (25 mL) and ethyl acetate (25 mL) to extract and separate the phases. The mixture was extracted with ethyl acetate (25 mL × 3). The combined organic layers were dried with Na₂SO₄, and

concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether (1:20) to give *N*,*N*-dibenzylcyanamide **3a** (1.80 g, 8.1 mmol, 81%). To a 100 mL flask was charged with *N*,*N*-dibenzylcyanamide **3a** (1.80g, 8.1 mmol), hydrogen peroxide (1.1g, 9.7 mmol, 1.2 equiv., 30% aq.) and DMSO (15 mL). Then the mixture was stirred for 4 h under air atmosphere at room temperature. After completion, added water (25 mL) and ethyl acetate (25 mL) to extract and separate the phases. The mixture was extracted with ethyl acetate (25 mL × 3). The combined organic layers were dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether (1:10) to give 1,1-dibenzylurea **4a** (1.63 g, 6.8 mmol, 84%).

3. Spectroscopic data for the products 3-5

N,*N*-dibenzylcyanamide (3a)^[1]

White solid; 33 mg, 75% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.41 - 7.35 (m, 6H), 7.32 - 7.31 (m, 4H), 4.11 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 134.4, 128.9, 128.6, 128.6, 118.2, 54.4; HRMS (ESI): m/z calcd for C₁₅H₁₄N₂ [M + H]⁺: 223.1230, found: 223.1226.

N,*N*-bis(2-fluorobenzyl)cyanamide (3b)

White solid; 40 mg, 77% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.38 - 7.32 (m, 4H), 7.16 (t, *J* = 7.5 Hz, 2H), 7.09 (t, *J* = 9.5 Hz, 2H), 4.23 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 161.2 (d, *J* = 249.5 Hz), 130.9 (d, *J* = 3.7 Hz), 130.7 (d, *J* = 8.8 Hz), 124.6(d, *J* = 3.7 Hz), 121.7 (d, *J* = 13.9 Hz), 117.3, 115.8 (d, *J* = 21.4 Hz), 48.7 (d, *J* = 3.7 Hz); ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -117.3; HRMS (ESI): m/z calcd for C₁₅H₁₂F₂N₂ [M + H]⁺: 259.1041, found: 259.1036.

N,*N*-bis(2-chlorobenzyl)cyanamide (3c)

White solid; 38 mg, 65% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.43 - 7.41 (m, 4H), 7.31 - 7.29 (m, 4H), 4.35 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 134.4, 132.2, 130.8, 130.2, 130.1, 127.4, 117.4, 52.7; HRMS (ESI): m/z calcd for C₁₅H₁₂Cl₂N₂ [M + H]⁺: 291.0450, found: 291.0442.

N,N-bis(2-bromobenzyl)cyanamide (3d)

White solid; 56 mg, 74% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.60 (dd, J = 8.0, 1.5 Hz, 2H), 7.42 (dd, J = 7.5, 1.5 Hz, 2H), 7.36 - 7.33 (m, 2H), 7.23 - 7.20 (m, 2H), 4.35 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 133.8, 133.4, 130.8, 130.4, 128.0, 124.4, 117.3, 55.1; HRMS (ESI): m/z calcd for C₁₅H₁₂Br₂N₂ [M - H]⁻: 376.9294, found: 376.9290.

N,*N*-bis(2-nitrobenzyl)cyanamide (3e)^[1]

Brown solid; 39 mg, 62% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.35 - 7.31 (m, 4H), 7.28 - 7.27 (m, 2H), 7.20 - 7.18 (m, 2H), 4.10 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 136.2, 135.0, 130.4, 129.1, 128.7, 126.8, 117.6, 54.2; HRMS (ESI): m/z calcd for C₁₅H₁₂N₄O₄ [M + H]⁺: 313.0931, found: 313.0930.

N,N-bis(3-fluorobenzyl)cyanamide (3f)

White solid; 43 mg, 83% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.39 - 7.34 (m, 2H), 7.10 - 7.00 (m, 6H), 4.13 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 163.1 (d, *J* = 248.2 Hz), 136.7 (d, *J* = 7.6 Hz), 130.8 (d, *J* = 7.6 Hz), 124.3 (d, *J* = 2.5 Hz), 117.7 (d, *J* = 20.2 Hz), 115.6 (d, *J* = 22.7 Hz), 54.2 (d, *J* = 2.5 Hz); ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -111.7; HRMS (ESI): m/z calcd for C₁₅H₁₂F₂N₂ [M + H]⁺: 259.1041, found: 259.1043.

N,N-bis(3-chlorobenzyl)cyanamide (3g)

White solid; 42 mg, 72% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 8.10 (d, J = 8.5 Hz, 2H), 7.72 (t, J = 7.5 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.56 (t, J = 8.0 Hz, 2H), 4.69 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 148.4, 134.3, 130.9, 130.0, 129.9, 125.8, 116.7, 53.3; HRMS (ESI): m/z calcd for C₁₅H₁₂Cl₂N₂ [M + H]⁺: 291.0450, found: 291.0452.

N,*N*-bis(3-methylbenzyl)cyanamide (3h)^[1]

White solid; 42 mg, 84% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.13 - 7.10 (m, 4H), 4.09 (s, 4H), 2.39 (s, 6H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 138.7, 134.4, 129.4, 129.4, 128.8, 125.8, 118.5, 54.3, 21.4; HRMS (ESI): m/z calcd for C₁₇H₁₈N₂ [M + H]⁺: 251.1543, found: 251.1540.

N,N-bis(3-nitrobenzyl)cyanamide (3i)

Brown solid; 32 mg, 52% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 8.23 - 8.21 (m, 2H), 8.16 - 8.15 (m, 2H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.61 (t, *J* = 8.0 Hz, 2H), 4.32 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 148.7, 136.2, 134.6, 130.5, 124.1, 123.6, 116.8, 54.6; HRMS (ESI): m/z calcd for C₁₅H₁₂N₄O₄ [M + H]⁺: 313.0931, found: 313.0932.

N,N-bis(3-methoxybenzyl)cyanamide (3j)

White solid; 44 mg, 78% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.29 (t, J = 8.0 Hz, 2H), 6.89 - 6.87 (m, 4H), 6.84 - 6.83 (m, 2H), 4.08 (s, 4H), 3.79 (s, 6H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 160.0, 135.9, 129.9, 120.8, 118.3, 114.1, 114.1, 55.2, 54.3; HRMS (ESI): m/z calcd for C₁₇H₁₈N₂O₂ [M + H]⁺: 283.1441, found: 283.1433.

N,*N*-bis(4-fluorobenzyl)cyanamide (3k)^[1] White solid; 44 mg, 85% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.29 - 7.25 (m, 4H), 7.09 - 7.04 (m, 4H), 4.08 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 162.9 (d, J = 248.2 Hz), 130.5 (d, J = 8.8 Hz), 130.1 (d, J = 3.8 Hz), 117.8, 116.0 (d, J = 21.4 Hz), 53.8; ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -112.7; HRMS (ESI): m/z calcd for C₁₅H₁₂F₂N₂ [M + H]⁺: 259.1041, found: 259.1033.

N,*N*-bis(4-chlorobenzyl)cyanamide (3l)^[1]

White solid; 50 mg, 86% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.73 - 7.71 (m, 4H), 7.04 - 7.02 (m, 4H), 4.04 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 138.3, 133.9, 130.6, 117.8, 94.7, 54.1; HRMS (ESI): m/z calcd for C₁₅H₁₂Cl₂N₂ [M + H]⁺: 291.0450, found: 291.0440.

N,*N*-bis(4-bromobenzyl)cyanamide (3m)^[1]

White solid; 63 mg, 83% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.51 (d, J = 8.0 Hz, 4H), 7.16 (d, J = 8.0 Hz, 4H), 4.06 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 133.2, 132.3, 130.4, 123.0, 117.7, 54.0; HRMS (ESI): m/z calcd for C₁₅H₁₂Br₂N₂ [M - H]⁻: 376.9294, found: 376.9292.

N,N-bis(4-iodobenzyl)cyanamide (3n)

White solid; 59 mg, 62% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.33 (d, J = 8.0 Hz, 4H), 7.21 (d, J = 8.5 Hz, 4H), 4.05 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 134.7, 132.7, 130.0, 129.2, 117.6, 53.8; HRMS (ESI): m/z calcd for C₁₅H₁₂I₂N₂ [M - H⁺]: 472.9017, found: 472.9013.

N,*N*-bis(4-methylbenzyl)cyanamide (3o)^[1]

White solid; 40 mg, 80% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.20 (s, 8H), 4.06 (s, 4H), 2.37 (s, 6H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 138.6, 131.5, 129.7, 128.8, 118.6, 54.1, 21.3; HRMS (ESI): m/z calcd for C₁₇H₁₈N₂ [M + H]⁺: 251.1543, found: 251.1540.

*N,N-*bis(4-(*tert*-butyl)benzyl)cyanamide (3p)

White solid; 58 mg, 87% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.41 - 7.38 (m, 4H), 7.25 - 7.23 (m, 4H), 4.08 (s, 4H), 1.33 (s, 18H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 151.7, 131.6, 128.5, 125.9, 118.6, 54.0, 34.7, 31.4; HRMS (ESI): m/z calcd for C₂₃H₃₀N₂ [M + H]⁺: 335.2482, found: 335.2474.

N,N-bis(4-(trifluoromethyl)benzyl)cyanamide (3q)

White solid; 59 mg, 82% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.65 (d, J = 8.0 Hz, 4H), 7.43 (d, J = 8.0 Hz, 4H), 4.21 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 138.2, 131.2 (q, J = 32.8 Hz), 129.0, 126.1 (q, J = 3.8 Hz), 122.7 (q, J = 272.6 Hz), 117.5, 54.4; ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -62.8; HRMS (ESI): m/z calcd for C₁₇H₁₂F₆N₂ [M + H]⁺: 359.0977, found: 359.0980.

N,*N*-bis(4-(trifluoromethoxy)benzyl)cyanamide (3r)

White solid; 63 mg, 81% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.35 - 7.32 (m, 4H), 7.23 (d, *J* = 8.0 Hz, 4H), 4.14 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 149.5 (q, *J* = 2.5 Hz), 132.9, 130.1, 121.4, 120.4 (q, *J* = 258.3 Hz), 117.6, 53.9; ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -57.9; HRMS (ESI): m/z calcd for C₁₇H₁₂F₆N₂O₂ [M + H]⁺: 391.0876, found: 391.0865.

N,*N*-bis(4-nitrobenzyl)cyanamide (3s)

Brown solid; 50 mg, 76% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 8.26 - 8.24 (m, 4H), 7.52 (d, *J* = 8.5 Hz, 4H), 4.29 (s, 4H); ¹³C NMR (126 MHz, Chloroform - d) δ 148.4, 141.0, 129.5, 124.4, 116.8, 54.4; HRMS (ESI): m/z calcd for C₁₅H₁₂N₄O₄ [M + H]⁺: 313.0931, found: 313.0922.

N,*N*-bis([1,1'-biphenyl]-4-ylmethyl)cyanamide (3t)

White solid; 62 mg, 83% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.66 - 7.62 (m, 8H), 7.50 - 7.47 (m, 4H), 7.44 - 7.38 (m, 6H), 4.22 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 141.7, 140.5, 133.4, 129.2, 128.9, 127.7, 127.7, 127.2, 118.4, 54.2; HRMS (ESI): m/z calcd for C₂₇H₂₂N₂ [M - H]⁻: 373.1710, found: 373.1708.

1,1-Dibenzylurea (4a)^[2]

White solid; 41 mg, 85% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.31 - 7.28 (m, 4H), 7.25 - 7.19 (m, 6H), 5.07 (s, 2H), 4.23 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.7, 137.3, 128.8, 127.5, 127.2, 50.2; HRMS (ESI): m/z calcd for C₁₅H₁₆N₂O [M + H]⁺: 241.1335, found: 241.1329.

1,1-Bis(2-fluorobenzyl)urea (4b)

White solid; 40 mg, 72% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.32 - 7.29 (m, 2H), 7.25 - 7.20 (m, 2H), 7.10 - 7.07 (m, 2H), 7.02 - 6.98 (m, 2H), 5.17 (s, 2H), 4.52 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 160.8 (d, J = 245.7 Hz), 159.5, 129.3 (d, J = 3.8 Hz), 129.2 (d, J = 8.8 Hz), 124.5 (d, J = 3.8 Hz), 124.2 (d, J = 15.1 Hz), 115.4 (d, J = 21.4 Hz), 44.3 (d, J = 5.0 Hz); ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -118.4; HRMS (ESI): m/z calcd for C₁₅H₁₄F₂N₂O [M + H] +: 277.1147, found: 277.1141.

1,1-Bis(2-chlorobenzyl)urea (4c)

White solid; 48 mg, 78% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.36 - 7.33 (m, 4H), 7.29 - 7.27 (m, 2H), 7.24 - 7.20 (m, 2H), 4.79 (s, 2H), 4.61 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.3, 134.4, 133.2, 129.8, 128.9 128.1, 127.4, 48.8; HRMS (ESI): m/z calcd for C₁₅H₁₄Cl₂N₂O [M + H]⁺: 309.0556, found: 309.0547.

1,1-Bis(2-bromobenzyl)urea (4d)

White solid; 59 mg, 75% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.50 (d, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 4.5 Hz, 4H), 7.17 - 7.15 (m, 2H), 4.60 (s, 4H), 4.54 (s, 2H);

¹³C NMR (126 MHz, Chloroform - *d*) δ 158.9, 135.7, 133.1, 129.1, 128.0, 127.9, 123.1, 51.2; HRMS (ESI): m/z calcd for C₁₅H₁₄Br₂N₂O [M + H] ⁺: 396.9546, found: 396.9540.

1,1-Bis(2-nitrobenzyl)urea (4e)

Brown solid; 43 mg, 65% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 8.09 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.72 - 7.69 (m, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.50 - 7.47 (m, 2H), 4.92 (s, 4H), 4.77 (s, 2H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.0, 148.3, 134.5, 132.8, 128.7, 128.2, 125.8, 49.1; HRMS (ESI): m/z calcd for C₁₅H₁₄N₄O₅ [M + H] ⁺: 331.1037, found: 331.1041.

1,1-Bis(3-fluorobenzyl)urea (4f)

White solid; 47 mg, 85% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.30 - 7.25 (m, 2H), 6.99 (d, J = 2.0 Hz, 2H), 6.98 - 6.92 (m, 4H), 5.17 (s, 2H), 4.44 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 163.2 (d, J = 247.0 Hz), 159.5, 139.9 (d, J = 6.3 Hz), 130.4 (d, J = 8.8 Hz), 122.8 (d, J = 3.8 Hz), 114.5 (d, J = 20.2 Hz), 114.1 (d, J = 21.4 Hz), 50.0 (d, J = 1.3 Hz); ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -122.3; HRMS (ESI): m/z calcd for C₁₅H₁₄F₂N₂O [M + H] +:277.1147, found: 277.1141.

White solid; 53 mg, 86% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.24-7.22 (m, 4H), 7.19 (d, J = 2.5 Hz, 2H), 7.10 - 7.08 (m, 2H), 5.09 (s, 2H), 4.41 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.4, 139.3, 134.9, 130.2, 127.9, 127.3, 125.4, 50.0; HRMS (ESI): m/z calcd for C₁₅H₁₄Cl₂N₂O [M + H] ⁺: 309.0556, found: 309.0550.

1,1-Bis(3-methylbenzyl)urea (4h)

White solid; 49 mg, 91% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.22 (t, *J* = 7.5 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.06 - 7.03 (m, 4H), 4.86 (s, 2H), 4.45 (s, 4H), 2.34 (s, 6H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.7, 138.6, 137.4, 128.7, 128.3, 127.9, 124.4, 50.4, 21.5; HRMS (ESI): m/z calcd for C₁₇H₂₀N₂O [M + H] +: 269.1648, found: 269.1643.

1,1-Bis(3-nitrobenzyl)urea (4i)

Brown solid; 45 mg, 68% yield; ¹H NMR (500 MHz, DMSO - d_6) δ 8.09 - 8.06 (m, 2H), 8.03 - 8.03 (m, 2H), 7.67 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 8.0 Hz, 2H), 6.35 (s, 2H), 4.61 (s, 4H); ¹³C NMR (126 MHz, DMSO - d_6) δ 158.5, 147.7, 141.2, 134.1, 129.8, 121.9, 121.8, 49.2; HRMS (ESI): m/z calcd for C₁₅H₁₄N₄O₅ [M + H] ⁺: 331.1037, found: 331.1030.

1,1-Bis(3-methoxybenzyl)urea (4j)

White solid; 53 mg, 88% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.24 (t, *J* = 8.0 Hz, 2H), 6.83 - 6.77 (m, 6H), 4.76 (s, 2H), 4.46 (s, 4H), 3.76 (s, 6H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 160.2, 159.6, 139.1, 130.0, 119.6, 113.2, 112.9, 55.3, 50.6; HRMS (ESI): m/z calcd for C₁₇H₂₀N₂O₃ [M + H]⁺: 301.1547, found: 301.1539.

1,1-Bis(4-fluorobenzyl)urea (4k)

White solid; 45 mg, 81% yield; ¹H NMR (500 MHz, Chloroform - d) δ 7.18 - 7.16 (m, 4H), 7.01 - 6.96 (m, 4H), 5.05 (s, 2H), 4.39 (s, 4H); ¹³C NMR (126 MHz,

Chloroform - *d*) δ 162.3 (d, J = 247.0 Hz), 159.5, 133.0, 132.9, 129.0, 128.9, 115.8, 115.7, 49.7; ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -114.8; HRMS (ESI): m/z calcd for C₁₅H₁₄F₂N₂O [M + H]⁺: 277.1147, found: 277.1140.

1,1-bis(4-chlorobenzyl)urea (41)

White solid; 54 mg, 87% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.33 - 7.30 (m, 4H), 7.18 - 7.16 (m, 4H), 4.59 (s, 2H), 4.43 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.1, 135.6, 133.7, 129.2, 128.7, 50.0; HRMS (ESI): m/z calcd for C₁₅H₁₄Cl₂N₂O [M + H]⁺: 309.0556, found: 309.0548.

1,1-Bis(4-bromobenzyl)urea (4m)

White solid; 70 mg, 88% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.46 - 7.43 (m, 4H), 7.09 (d, *J* = 8.5 Hz, 4H), 4.89 (s, 2H), 4.38 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.3, 136.1, 132.2, 129.0, 121.7, 49.9; HRMS (ESI): m/z calcd for C₁₅H₁₄Br₂N₂O [M + H]⁺: 396.9546, found: 396.9538.

1,1-Bis(4-iodobenzyl)urea (4n)

White solid; 83 mg, 84% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.66 (d, J = 7.5 Hz, 4H), 7.97 (d, J = 8.0 Hz, 4H), 4.63 (s, 2H), 4.39 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.1, 138.1, 136.8, 129.3, 93.2, 50.2; HRMS (ESI): m/z calcd for C₁₅H₁₄I₂N₂O [M + H]⁺: 492.9268, found: 492.9255.

1,1-Bis(4-methylbenzyl)urea (40)

White solid; 45 mg, 84% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.16 - 7.12 (m, 8H), 4.63 (s, 2H), 4.44 (s, 4H), 2.34 (s, 6H); ¹³C NMR (126 MHz, Chloroform -

d) δ 159.5, 137.3, 134.4, 129.6, 127.4, 50.2, 21.2; **HRMS (ESI)**: m/z calcd for C₁₇H₂₀N₂O [M + H]⁺: 269.1648, found: 269.1642.

1,1-Bis(4-(*tert*-butyl)benzyl)urea (4p)

White solid; 57 mg, 81% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.38 - 7.35 (m, 4H), 7.19 (d, J = 8.5 Hz, 4H), 4.81 (s, 2H), 4.47 (s, 4H), 1.33 (s, 18H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.7, 150.5, 134.4, 127.1, 125.8, 50.2, 34.6, 31.5; HRMS (ESI): m/z calcd for C₂₃H₃₂N₂O [M + H]⁺: 353.2587, found: 353.2580.

1,1-Bis(4-(trifluoromethyl)benzyl)urea (4q)

White solid; 62 mg, 82% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.59 (d, J = 8.0 Hz, 4H), 7.35 (d, J = 8.0 Hz, 4H), 4.91 (s, 2H), 4.53 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.3, 141.2, 130.3 (q, J = 32.8 Hz), 127.6, 126.0 (q, J = 3.8 Hz), 124.1 (q, J = 272.2 Hz), 50.4; ¹⁹F NMR (376 MHz, Chloroform - *d*) δ -62.6; HRMS (ESI): m/z calcd for C₁₇H₁₄F₆N₂O [M + H]⁺: 377.1083, found: 377.1075.

1,1-Bis(4-(trifluoromethoxy)benzyl)urea (4r)

White solid; 65 mg, 80% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.27 (d, J = 8.5 Hz, 4H), 7.20 (d, J = 8.0 Hz, 4H), 4.92 (s, 2H), 4.49 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.3, 148.8 (q, J = 2.1 Hz), 135.9, 128.7, 121.5 (q, J = 258.3 Hz), 50.0; ¹⁹F NMR (126 MHz, Chloroform - *d*) δ -58.0; HRMS (ESI): m/z calcd for C₁₇H₁₄F₆N₂O₃ [M + H]⁺: 409.0981, found: 409.0972.

1,1-Bis(4-nitrobenzyl)urea (4s)

Brown solid; 52 mg, 79% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 8.22 - 8.19 (m, 4H), 7.42 (d, *J* = 8.5 Hz, 4H), 4.72 (s, 2H), 4.60 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 158.7, 147.8, 144.3, 128.0, 124.4, 50.5; HRMS (ESI): m/z calcd for C₁₅H₁₄N₄O₅ [M + H]⁺: 331.1037, found: 331.1029.

1,1-Bis([1,1'-biphenyl]-4-ylmethyl)urea (4t)

White solid; 63 mg, 80% yield; ¹H NMR (500 MHz, Chloroform - *d*) δ 7.60 - 7.58 (m, 8H), 7.47 - 7.44 (m, 4H), 7.38 - 7.35 (m, 6H), 4.76 (s, 2H), 4.58 (s, 4H); ¹³C NMR (126 MHz, Chloroform - *d*) δ 159.5, 140.8, 140.7, 136.4, 128.9, 127.8, 127.7, 127.5, 127.2, 50.4; HRMS (ESI): m/z calcd for C₂₇H₂₄N₂O [M + H] ⁺: 393.1961, found: 393.1952.

3-(2-Bromobenzyl)-3,4-dihydroquinazolin-2(1H)-one (5a)

White solid; 51 mg, 80% yield; ¹H NMR (500 MHz, DMSO - d_6) δ 9.41 (s 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.27 - 7.22 (m, 2H), 7.15 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 6.88 - 6.83 (m, 2H), 4.60 (s, 2H), 4.42 (s, 2H); ¹³C NMR (126 MHz, DMSO - d_6) δ 153. 6, 137.5, 136.0, 132.7, 129.1, 128.2, 128.0, 127.9, 125.6, 122.6, 121.1, 117.5, 113.4, 49.8, 48.1; HRMS (ESI): m/z calcd for C₁₅H₁₃BrN₂O [M + H]⁺: 317.0284, found: 317.0280.

4. X-raySpectra

Single crystal data for compound 3m

3m X-ray(CCDC 2324482)

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1_a

Bond precision:	C-C = 0.0050 A	Wavelength=	=0.71073
Cell:	a=11.438(12)	b=25.58(3)	c=4.893(5)
	alpha=90	beta=90	gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	1432 (3)	1432(3)	
Space group	Pnma	Pnma	
Hall group	-P 2ac 2n	-P 2ac 2n	
Moiety formula	C15 H12 Br2 N2	?	
Sum formula	C15 H12 Br2 N2	C15 H12 B1	2 N2
Mr	380.07	380.09	
Dx,g cm-3	1.763	1.763	
Z	4	4	
Mu (mm-1)	5.648	5.649	
F000	744.0	744.0	
F000'	742.04		
h,k,lmax	13,30,5	13,30,5	
Nref	1275	1261	
Tmin, Tmax	0.513,0.636	0.864,0.86	54
Tmin'	0.503		
Correction metho AbsCorr = MULTI	od= # Reported T Lin -SCAN	mits: Tmin=0.864 Tma	ax=0.864
Data completene:	ss= 0.989	Theta(max) = 24.883	3
R(reflections)=	0.0298(893)		wR2(reflections)= 0.0626(1261)
S = 1.068	Npar= 91		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C a - Axis is (Too) Large PLAT148_ALERT_3_C s.u. on the 0.012 Ang. 0.0300 Ang. PLAT148_ALERT_3_C s.u. on the b - Axis is (Too) Large c - Axis is (Too) Large PLAT148_ALERT_3_C s.u. on the 0.005 Ang.

Alert level G PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 6 Note 6 1 2, 4 1 3, 3 1 1, 9 1 1, 6 1 0, 3 1 3, PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check 0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so

attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta *Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

Single crystal data for compound 3s

Datablock 1_a - ellipsoid plot

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1_a

Bond precision:	C-C = 0.0049 A	Wavelength=0.71073	
Cell:	a=9.0138(8) alpha=90	b=13.9046(14) beta=100.927(2)	c=11.9428(13) gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	1469.7(3)	1469.7(3)	
Space group	P 21/n	P 21/n	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level C

PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low	47% Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.00486 Ang.

Alert level G

```
      PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
      Please Do !

      PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ......
      4.9 Low

      PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged
      Please Check
```

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
3 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

Single crystal data for compound 4b

4b X-ray(CCDC 2324490)

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1_a

Bond precision:	C-C = 0.0035 A	Wavelength=0.71073	
Cell:	a=11.6329(6) alpha=90	b=7.7767(5) beta=90	c=29.3752(18) gamma=90
Temperature:	296 K		đ
	Calculated	Reporte	d
Volume	2657.4(3)	2657.4(3)
Space group	Pbca	Pbca	
Hall group	-P 2ac 2ab	-P 2ac	2ab
Moiety formula	C15 H14 F2 N2 O	?	
Sum formula	C15 H14 F2 N2 O	C15 H14	F2 N2 O
Mr	276.28	276.28	
Dx,g cm-3	1.381	1.381	
Z	8	8	
Mu (mm-1)	0.107	0.107	
F000	1152.0	1152.0	
F000'	1152.65		
h,k,lmax	13,9,34	13,9,34	
Nref	2347	2332	
Tmin, Tmax	0.977,0.981	0.864,0	.864
Tmin'	0.977		
Correction metho AbsCorr = MULTI-	od= # Reported T Lin -SCAN	nits: Tmin=0.864	Tmax=0.864
Data completenes	ss= 0.994	Theta(max) = 25 .	036
R(reflections)=	0.0508(1743)		wR2(reflections)= 0.1202(2332)
S = 1.033	Npar= 18	1	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

PLAT334_ALERT_2_C Small <c-c> Benzene Dist. C1 -C6 . 1.37 Ang</c-c>			
PLAT414_ALERT_2_C Short Intra D-HH-X H2BH9B . 1.96 Ang			
x,y,z = 1_555 Check			
0			
Alert level G			
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms 2 Rep	ort		
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 2 Rep	ort		
H2A H2B			
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 1 Rep	ort		
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for First Par 0.0010 Rep	ort		
PLAT192_ALERT_3_G A Non-default DELU Restraint Value for SecondPar 0.0020 Rep	ort		
PLAT860_ALERT_3_G Number of Least-Squares Restraints 1 Note	9		
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do	!		
0 ALERT level A = Most likely a serious problem - resolve or explain			
0 ALERT level B = A potentially serious problem, consider carefully			
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight			
7 ALERT level G = General information/check it is not something unexpected			
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data			
3 ALERT type 2 Indicator that the structure model may be wrong or deficient			
3 ALERT type 3 Indicator that the structure quality may be low			
1 ALERT type 4 Improvement, methodology, query or suggestion			
1 ALERT type 5 Informative message, check			

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

5. References

- [1] L. J. Wu, Q. R. Wang, J. Guo, J. P. Guo, J. N. Wei, P. Chen and Z. F.Xi, Angewandte Chem, 2023, 135, e202219298;
- [2] F, Shi, M. R. Smith and R. E. Maleczka, Organic Letters, 2006, 8, 1411-1414.

6. NMR spectra

3a ¹³C NMR (126 MHz, CDCl₃)

3b ¹H NMR (500 MHz, CDCl₃)

3b ¹⁹F NMR (376 MHz, CDCl₃)

3c ¹H NMR (500 MHz, CDCl₃)

-10

-20 -30 -40 -50 -60 -70 -80

10 0

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

3c¹³C NMR (126 MHz, CDCl₃)

3d ¹³C NMR (126 MHz, CDCl₃)

170 160 150 140 130 120 -10

3e¹³C NMR (126 MHz, CDCl₃)

3f ¹H NMR (500 MHz, CDCl₃)

3f¹³C NMR (126 MHz, CDCl₃)

3f ¹³F NMR (376 MHz, CDCl₃)

3g ¹H NMR (500 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

3h ¹H NMR (500 MHz, CDCl₃)

3h ¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

3i ¹H NMR (500 MHz, CDCl₃)

3i ¹³C NMR (126 MHz, CDCl₃)

3j ¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

3k ¹H NMR (500 MHz, CDCl₃)

3k ¹³C NMR (126 MHz, CDCl₃)

3k ¹⁹F NMR (500 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

3l ¹H NMR (500 MHz, CDCl₃)

3m ¹H NMR (500 MHz, CDCl₃)

3n ¹H NMR (500 MHz, CDCl₃)

30 ¹H NMR (500 MHz, CDCl₃)

-10 140 130

3q ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

3r ¹H NMR (500 MHz, CDCl₃)

3r¹⁹F NMR (376 MHz, CDCl₃)

3t ¹H NMR (500 MHz, CDCl₃)

4a ¹H NMR (500 MHz, CDCl₃)

4b ¹H NMR (500 MHz, CDCl₃)

4b ¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

4b ¹⁹F NMR (376 MHz, CDCl₃)

4c¹H NMR (500 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

4c¹³C NMR (126 MHz, CDCl₃)

4d ¹H NMR (500 MHz, CDCl₃)

4d ¹³C NMR (126 MHz, CDCl₃)

4e ¹H NMR (500 MHz, CDCl₃)

4e¹³C NMR (126 MHz, CDCl₃)

4f ¹H NMR (500 MHz, CDCl₃)

4f¹³C NMR (126 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

4g ¹H NMR (500 MHz, CDCl₃)

4g ¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

4h ¹H NMR (500 MHz, CDCl₃)

4h ¹³C NMR (126 MHz, CDCl₃)

4i ¹³C NMR (126 MHz, DMSO-*d*₆)

4j ¹H NMR (500 MHz, CDCl₃)

4j ¹³C NMR (126 MHz, CDCl₃)

4k ¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

4k ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

4l ¹H NMR (500 MHz, CDCl₃)

4l ¹³C NMR (126 MHz, CDCl₃)

4m ¹H NMR (500 MHz, CDCl₃)

4m ¹³C NMR (126 MHz, CDCl₃)

4n ¹H NMR (500 MHz, CDCl₃)

4n ¹³C NMR (126 MHz, CDCl₃)

40 ¹H NMR (500 MHz, CDCl₃)

40 ¹³C NMR (126 MHz, CDCl₃)

4p ¹H NMR (500 MHz, CDCl₃)

4q ¹H NMR (500 MHz, CDCl₃)

4q ¹³C NMR (126 MHz, CDCl₃)

-10

4q ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

4r ¹H NMR (500 MHz, CDCl₃)

4r¹³C NMR (126 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

0 -10

4r¹⁹F NMR (376 MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

4s ¹H NMR (500 MHz, CDCl₃)

4s ¹³C NMR (126 MHz, CDCl₃)

4t ¹³C NMR (126 MHz, CDCl₃)

5a ¹³C NMR (126 MHz, DMSO - d₆)

-: 150 140 130 120 110 100 -10

5a HRMS spectra

