IN VITRO AND *IN SILICO* OF ALPHA GLUCOSIDASE INHIBITION AND ANTIFUNGAL ACTIVITY OF *COFFEA CANEPHORA* HUSK

Tran Thi Ngoc Mai^a, Phan Nhat Minh^{b,c}, Nguyen Tan Phat^{b,c}, Mai Thanh Chi^{b,c}, Dang Chi Hien^{b,c}, Van-Kieu Nguyen^{d,e}, Thuc Huy Duong^f, Tran Thanh Nha^g, Tran Nguyen Minh An^{h*}, Nguyen Ngoc Huyen Tran^h, Mai Dinh Tri ^{b,c,*}

^aInstitute of Applied Sciences, HUTECH University, Ho Chi Minh City, Viet Nam, 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam;

^bInstitute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc ward, District 12, Ho Chi Minh City, Vietnam

°Graduate University of Science and Technology, Vietnam Academy of Science and Technology,

18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; maidinhtri@gmail.com

^dInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam.

^eFaculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam.

^fDepartment of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, 748342, Ho Chi Minh City, Vietnam

^gDepartment of Environmental Engineering, Thu Dau Mot University, Binh Duong, Vietnam

^hFaculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City,

71420, Vietnam; trannguyenminhan@iuh.edu.vn

*e-mail: maidinhtri@gmail.com, trannguyenminhan@iuh.edu.vn

SUPLLEMENTARY MATERIAL

Figure 2S. The ¹H NMR spectrum of 1 in CDCl₃

Figure 3S. The ¹³C NMR spectrum of 1 in CDCl_{3.}

Figure 4S. The HSQC spectrum of 1 in CDCl₃

Figure 5S. The HMBC spectrum of 1 in CDCl₃

Figure 6S. The NOESY spectrum of 1 in CDCl₃

Figure 7S. The ¹H NMR spectrum of 2 in CDCl₃

Figure 8S. The ¹³C NMR spectrum of 2 in CDCl₃

Figure 9S. The HSQC spectrum of 2 in CDCl₃

Figure 10S. The HMBC spectrum of 2 in CDCl₃

Figure 11S. The ¹H NMR spectrum of **3** in CDCl₃

Figure 128. The 13 C NMR spectrum of 3 in CDCl₃

Figure 148. The HMBC spectrum of 3 in CDCl₃

Figure 158. The ¹H NMR spectrum of 4 in CDCl₃

Figure 168. The ¹³C NMR spectrum of 4 in CDCl₃

Figure 178. The HSQC spectrum of 4 in CDCl₃

Figure 18S. The HMBC spectrum of 4 in CDCl₃

Figure 208. The ¹³C NMR spectrum of 5 in DMSO- d_6

Figure 22S. The HMBC spectrum of 5 in DMSO- d_6

Figure 24S. The ¹³C NMR spectrum of 6 in DMSO- d_6

Figure 258. The HSQC spectrum of of 6 in DMSO- d_6

Figure 26S. The HMBC spectrum of 6 in DMSO- d_6

Figure 28S. The ¹³C NMR spectrum of 7 in DMSO- d_6

Figure 29S. The HSQC spectrum of 7 in DMSO- d_6

Figure 30S. The HMBC spectrum of **7** in DMSO- d_6

Figure 31S. The important ligand interactions between pose 119, compound 3 and 3TOP enzyme

Figure 32S. The significant interaction between the best pose 394/ compound 6 and 3TOP on 2D diagram, not enough interacions

Figure 338. The significant interactions between pose 491/compound 1 and 3TOP on 2D diagram, not good interactions

Figure 34S. The significant ligand interaction model between pose 237, compound 4 and 3TOP enzyme, not good interaction

Figure 35S. The significant ligand interactions between pose 155, compound 2 and 3TOP

Figure 368. The significant interactions between pose 355, compound 5 and 3TOP enzyme, not good interactions

Figure 37S. The Acarbose, pose 61/ positive control drug docked to 3TOP enzyme.

Figure 38S. The most important ligand interactions forming between pose 992/compound (6) and 2VF5 on one 2D diagram: good interaction.

Figure 398. The significant ligand interaction between pose 81 and 2VF5 enzyme on one 2D diagram.

Nc -	ergo	osterol peroxide (2) ^a		cerevisterol (3) ^a		
INO -	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$		
1	34.7	1.93(1H, m), 1.68 (1H, dd, 13.8, 3.6)	33.0			
2	30.1	1.50 (1H, m), 1.94 (1H, m)	31.9			
3	66.4	3.99 (1H, m)	67.7	4.08 (1H, m)		
4	37.0	1.88 (1H, m), 2.10 (1H, m)	39.5			
5	82.1		76.0			
6	135.4	6.24 (1H, d, 8.4)	73.7	3.62 (brs)		
7	130.7	6.50 (1H, d, 8.4)	117.5	5.35 (1H, t, 2.4)		
8	79.4		144.0			
9	51.1		43.5			
10	36.9		37.1			
11	20.6		22.0			
12	39.4		39.2			
13	44.5		43.8			
14	51.7		54.7			
15	23.4		22.7			
16	28.6		29.2			
17	56.2	1.25 (1H, m)	56.0			
18	18.1	0.88 (3H, s)	12.3	0.60 (3H, <i>s</i>)		
19	12.8	0.81 (3H, s)	18.4	1.08 (3H, s)		
20	39.7	1.96 (1H, m)	40.3			
21	20.8	0.99 (3H, d, 6.6)	21.1	1.03 (3H, d, 6.6)		
22	135.2	5.16 (1H, d, 15.0, 8.4)	135.3	5.23 (1H, dd, 15.6, 7.2)		
23	132.3	5.21 (1H, m, H-22)	132.2	5.17 (1H, dd, 15.0, 7.4)		
24	42.7	1.83 (1H, m)	42.5			
25	33.0	1.48 (1H, m)	33.1			
26	19.8	0.82 (3H, d, 6.6)	19.9	0.84 (3H, d,7.2)		
27	19.9	0.83 (3H, d, 6.6)	19.6	0.83 (3H, d, 6.6)		
28	17.5	0.91 (3H, d, 6.6)	17.6	0.92 (3H, d, 7.2)		
δ in ppm	; J in Hz; ªCD	DCl ₃				

Table 1S. Spectroscopic data of ¹H (600 MHz) and ¹³C (150 MHz) NMR of ergosterol peroxide (2) and cerevisterol (3).

		gramisterol (4) ^a	caffeine (5) ^b		
No -	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	
1	36.5		27.9	3.40 (s, 1-CH ₃)	
2	30.9		151.7		
3	74.0	2.85 (1H, m)	29.7	3.58 (s, 3-CH ₃)	
4	39.8		148.7		
5	46.3		107.6		
6	22.4		155.4		
7	117.2	5.14 (1H, d, 4.2)	33.5	3.99 (s, 7-CH ₃)	
8	138.5		141.4	7.52 (1H, s)	
9	49.0				
10	34.1				
11	21.6				
12	39.0				
13	42.9				
14	54.2				
15	21.7				
16	28.9				
17	55.3				
18	11.6	0.54 (3H, s)			
19	13.9	0.75 (3H, s)			
20	35.4				
21	18.6	0.89 (3H, d, 6.6)			
22	34.3				
23	30.4				
24	155.7				
25	33.0				
26	20.8	0.97 (3H, d, 6.6)			
27	21.7	0.98 (3H, d, 6.6)			
28	106.4	4.70 (1H, s); 4.64 (1H, s)			
29	15.3	0.93 (3H, d, 6.6)			
δ in ppm	; J in Hz; a C	DCl_3 , ^b DMSO- d_6			

Table 2S. Spectroscopic data of 1 H (600 MHz) and 13 C (150 MHz) NMR of gramisterol (4) and caffeine (5).

No –	methyl 5	- <i>O</i> -caffeoylquinate (6) ^a	chlorogenic acid (7) ^a		
10 -	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	
1	73.0	-	73.5	-	
		2.13 (1H: m: H2a)		2.04 (1H; m; H2a)	
2	37.2	1.70 (111, 11, 1120)	37.2	1.81 (1H; dd; 13.2; 7.8;	
		1./9 (1H; m; H2b)		H2b)	
3	66.9	3.88 (1H; m)	68.1	3.93 (1H; d; 2.4)	
4	69.3	3.62 (1H; m)	70.4	3.55-3.58 (1H; m)	
5	71.0	5.02 (1H; m)	70.8	5.06-5.09 (1H; m)	
		2.13 (1H; m; H6a)		2.04 (1H; m; H6a)	
6	35.1	1.92 (1H: dd: 13.2: 3.0:	36.3	1.96 (1H: dd: 13.2: 3.6:	
		H6b)		H6b)	
7	173.6	-	174.9	-	
1'	125.1	-	125.6	-	
2'	114.4	7.02 (1H; s)	114.7	7.04 (1H; d; 1.8)	
3'	145.8	-	144.9	-	
4'	148.9	-	148.3	-	
5'	115.8	6.76 (1H; d; 6.6)	115.7	6.78 (1H; d; 8.4)	
6'	121.4	6.97 (1H; d; 7.2)	121.3	6.99 (1H; dd; 8.4; 1.8)	
7'	145.2	7.39 (1H; d; 15.6)	145.5	7.43 (1H; d; 15.6)	
8'	113.6	6.11 (1H; d; 15.6)	114.3	6.16 (1H; d; 16.2)	
9'	165.4	-	165.7	-	
OCH ₃	51.8	3.56 (3H, s)			
δ in ppm;	J in Hz.; a D	$MSO-d_6$			

Table 3S. Spectroscopic data of ¹H (600 MHz) and ¹³C (150 MHz) NMR of methyl 5-O-caffeoylquinate (6) and chlorogenic acid (7).

Table 4S. The significant docking results of compound (1-7), and Acarbose (postive control) have been docked to **3TOP**: enzyme to explain and analyze the significant interaction results in the ligand interaction model

Entry	Pose ^[a]	Free Gibbs energy ^[b]	K ^[c]	The number of Hydrogen ^[d]	The character and bond length ^[e]
Comp 7	235	-4.98	224.1	8	A:Lys 1088:N – Pose 235:O (2.80 Å); A:Gln1109:N - Pose 235:O (3.06 Å); B:Thr 1103:O - Pose 235:O (2.71 Å); Pose 235:H - Glu1095:O (1.71 Å); Pose 235:H - B:Glu 1095:O (2.08 Å); Pose 235:H - B:Thr1103:O (2.05 Å); Pose 235:H - A:Gln 1109:O; (2.17 Å); Pose 235:H - A:Asn 1090:O (2.17 Å)
Comp 3	119	-8.84	0.330	4	B:Thr 1101:O – Pose 119:O (3.12 Å); B:Gly 1102:N – Pose 119:O (3.07 Å); B:Thr 1103:N – Pose 119:O (3.13 Å); Pose 119:H - A:Asn 1090:O (2.34 Å)
Acarbose	61	-8.81	0.35	0	
Comp 6	394	-5.38	114.0	11	A:Lys 1088:N – Pose 394:O (3.12Å); A:Lys 1088:N – Pose 394:O (2.85 Å); B:Ile 1104:N – Pose 394:O (2.88 Å); Pose 394:H - A:Gln 1109:O (2.25 Å); Pose 394:H - A:Glu 1095:O (1.80 Å); Pose 394:H - A:Glu 1095:O (2.05 Å); Pose 394:H - A:Gln 1109:O (1.74 Å); Pose 395:H - A:Gln 1109:O (3.25 Å); Pose 394:H - A:Glu 1095:O (1.80 Å); Pose 394:H - A:Glu 1095:O (2.05); Pose 394:H - A:Asp 1107:O (2.03Å)
Comp 1	491	-8.43	0.657	0	No hydrogen bonding
Comp 4	237	-9.49	0.11	01	Pose 237:H - A:Asn 1090:O (2.22 Å)
Comp 2	155	-8.71	0.412	01	Pose 155: H - B:Gln 1109:O (1.96 Å)
Comp 5	355	-4.59	429.8		No hydrogen bonding

Entry	Pose [a]	Free Gibbs energy [b]	K _i [c]	The number of hydrogen ^[d]	The character and bond length ^[e]	Explaination: Good/bad interaction in ligand interaction model
Comp 7	49	-5.25	140	8	X:Ser 303:O – Pose 49:O (2.51 Å); X:Gln 348:N – Pose 49:O (2.63 Å); X:Ala 602:N – Pose 49:O (2.82 Å); Pose 49:H - X:Ser 303:O (2.11 Å); Pose 49: H - X:Leu 346:O (2.23 Å); Pose 49:H - X:Glu 488:O (1.79 Å); Pose 49:H - X:Glu 488:O (2.30 Å); Pose 49:H - X: Ala 602:O (2.10 Å).	Good interaction
Comp 6	992	-6.81	10.26	12	X:Ser303:N - :Pose 992:O (2.97Å); X:Ser 303:N - Pose 992:O (2.93 Å); X:Ser 303:OG - Pose 992:O (2.87 Å); X:Ser 303:OG - Pose 992:O (2.87 Å); X:Ser 347:O - Pose 992:O (2.80 Å); X:Ser 349:N - Pose 992:O (3.17 Å); X:Ser 349:O - Pose 992:O (2.58 Å); X:Thr 352:O - Pose 992:O (2.74 Å); X:Thr 352:O - Pose 992:O (2.92 Å); Pose 992:H - X:Thr 352:O (2.12 Å); Pose 992:H - X:Ser 349:O (2.39 Å); Pose 992:H - X:Thr 352:O (2.06 Å)	Good interaction
Fluconazole	81	-5.74	61.85	6	X:Cys 300:N – Pose 81:N (3.11 Å); X:Ser 303:N – Pose 81:O (2.97 Å); Ser 303:O – Pose 81:N (2.71 Å); X:Ser 303:O - :LIG1:O (2.75 Å); X:Ser 401:O – Pose 81:N (2.86 Å); Pose 81:H - X:Cys 300:O (2.26 Å)	Good interaction

Table 5S. The significant docking results of compound (1-7) to 2VF5 enzyme: PDB have been presented the significant interaction results and analyzed the ligand interaction model.

Entry	Pose [a]	Free Gibbs energy ^[b]	K _i [c]	The number of hydrogen ^[d]	The character and bond length ^[e]	Explaination: Good/bad interaction in ligand interaction model
Comp 1	720	-9.96	0.05	1	Pose 720:H - X:Glu 488:O (1.98 Å)	Not full interactions: Functional group: 01 hydrogen bonding, Glu 488 to hydrogen atom of hydroxyl alcohol; Capping group (CA): no; Connecting unit (CU): 01 alkyl interaction from Ala 299 to carbon methyl.
Comp 2	329	-10.43	0.023	3	X:Thr 302:N – Pose 329:O (2.72 Å); X:Gln 348:N – Pose 329:O (2.67 Å); X:Ser 347:O – Pose 329:O (3.06 Å)	Bad interaction: 01 unfavorable donor- donor from Gln 348 to hydrogen atom of hydroxyl alcohol; (red color)
Comp 3	830	-10.17	0.035	3	X:Gly 301:N – Pose 930:O (2.88 Å); X:Asn 305:N – Pose 930:O (3.13 Å); X:Asn 305:N – Pose 930:O (1.99 Å)	Not full interactions: Functional group: 02 hydrogen bondings: Glu 488 to hydrogen atom of alcohol group; Ala 602 to hydrogen atom of alcohol group; Capping group (CA): 01 pi-alkyl from Leu 601 to cyclohexyl group on pose 830; Connecting unit (CU): no.
Comp 4	973	-10.44	0.022	0	-	Not full interactions: Functional group: no; Capping group (CA): 01 alkyl interaction from Leu 601 to cyclohexyl group; Connecting unit (CU): No

Entry	Pose [a]	Free Gibbs energy [b]	K _i [c]	The number of hydrogen ^[d]	The character and bond length ^[e]	Explaination: Good/bad interaction in ligand interaction model
Comp 5	177	-4.72	348	5	X:Ser 303:N – Pose 177:N (2.97 Å); X:Ser 303:OG - Pose 177:N (3.08 Å); X:Ser 349:O - :LIG1:O (2.60 Å) X:Thr 352:O – Pose 177:O (3.01 Å) X:Lys 603:N – Pose 177:O (3.20 Å)	Not full interactions: Functional group: 03 hydrogen bondings from Ser 349 and Thr 352 to oxygen atom of carbonyl group and Ser 303 to nitrogen atom on pose; Capping group (CA): no; Connecting unit (CU): 03 caarbon hydrogen bond interactions from Cys and Ser 303 to methyl group and Lys 603 to another methyl group on pose.