Supporting Information

Four cyclometalated Ir(III) complexes and Insights into their luminescence,

cytotoxicity and DNA/BSA binding performance

Qianshui Yu^a, Shunxin Gu^a, Xinda Yang^b, Pengfei Shi^{a*} and Qin Jiang^{a*}

^aSchool of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P.R. China

^bShanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, P. R. China

Corresponding email: jiangqin@jou.edu.cn, shipf@jou.edu.cn

Fig. S2 ¹HNMR spectrum of Ir1A in d₆-acetone

Fig. S3 ¹HNMR spectrum of Ir1B in d₆-acetone

Fig. S4 ¹HNMR spectrum of Ir2A in d₆-DMSO

Fig. S5 ¹HNMR spectrum of Ir2B in d₆-DMSO

Fig.S6 ESI-MS for complex Ir1A. Inserted are the zoomed mass spectrum (yellow) and simulated isotope distribution using IsoPro 3.0 (red)

Fig.S7 ESI-MS for complex Ir1B. Inserted are the zoomed mass spectrum (yellow) and simulated isotope distribution using IsoPro 3.0 (red)

Fig.S8 ESI-MS for complex Ir2A. Inserted are the zoomed mass spectrum (yellow) and simulated isotope distribution using IsoPro 3.0 (red)

Fig.S9 ESI-MS for complex Ir2B. Inserted are the zoomed mass spectrum (yellow) and simulated isotope distribution using IsoPro 3.0 (red)

Fig.S10 Three-dimensional molecular structure of four iridium (III) complexes (Ir1A~Ir2B) optimized via Gaussian calculations.

Fig.S11 Normalized one-photon excited fluorescence spectra of four iridium(III) complexes (Ir1A~Ir2B) in different solvents.

Fig. S12 Open-aperture Z-scan experimental data and fitting curves for Complexes Ir1A in DMSO solution. (1.0 × 10⁻³ M)

Fig.S13 One-photon excited fluorescence spectra of DHR123 in the absence and presence of iridium(III) complexes Ir1A~Ir2B. (solvent: acetonitrile).

Fig.S14 Absorption spectra of DHR123 in the absence and presence of iridium(III) complexes Ir1A~Ir2B. (Solvent: acetonitrile).

Fig. S15 Theoretical simulation of the interaction mode between the Ir(III) complex with BSA.

Comula		DNA
x	Autodock scores (kcal/mol)	Hydrogen bonding
	-4.68	(Ir1A)H57 OP2(DA-18) (1.9 Å)
Ir1A		(Ir1A)H58 OP2(DA-18) (1.8 Å)
		(Ir1A)N14 H7(DA-17) (2.0 Å)
Ir1B	-4.59	(Ir1B)O56 H42(DC-9) (2.0 Å)
Iን ለ	-4.33	(Ir2A)H72 OP2(DC-21) (1.8 Å)
IIZA		(Ir2A)H77 OP2(DC-21) (2.3 Å)
I")D	-4.76	(Ir2B)O40 H21(DG-10) (1.8 Å)
If2B		(lr2B)H72 O2(DC-11) (2.1 Å)
C 1		BSA
Comple x	Autodock scores (kcal/mol)	Hydrogen bonding
Ir1A	-2.41	(Ir1A)H57 O(PRO-338) (2.1 Å)
Ir1B	-2.99	(Ir1B)O56 H11(ARG-217) (2.2 Å)
Ir2A	-3.19	(Ir2A)N27 OE2(GLU-284) (3.0 Å)
Ir2B	-3.34	_

Table S1 Autodock results for the binding of the four Ir(III) complexes with DNA or BSA

Interaction with DNA or BSA	isobestic point	Hypochromism of MLCT band
Ir1A-DNA	/	λ ₄₀₅ 23.6%
Ir1B-DNA	/	λ_{425} 14.3% with
Ir2A-DNA	324 and 486nm	λ_{445} 42.5%
Ir2B-DNA	284nm	λ ₄₂₃ 9.8%
Ir1A-BSA	293nm	λ ₄₀₅ 27.8%
Ir1B-BSA	297nm	λ_{425} 5.6%
Ir2A-BSA	303nm	λ ₄₄₅ 10.0%
Ir2B-BSA	297nm	$\lambda_{423} 8.9\%$

Table S2 Interaction of the Ir(III) complexes with DNA or BSA studied by UV-vis titration experiments.

lr	2.17414	-0.41517	0.08432	С	6.23112	-1.31668	1.33392
0	-10.1024	0.17545	-2.06799	С	3.86317	-1.29675	-2.18406
0	-10.6467	-1.70798	-0.16007	С	2.40704	1.97496	3.68086
N	-8.41165	0.4223	0.47079	С	-4.89805	1.22126	-0.40391
N	0.11154	-0.07709	-0.07127	С	1.7507	1.27316	4.68887
N	1.44465	-2.30363	0.3346	С	1.31752	-0.53742	3.13236
N	3.05708	1.49385	0.06748	С	-9.55761	-1.81255	0.74631
N	4.16875	-0.97719	0.1689	C	1.69347	-4.65683	0.67501
С	1.96918	0.14197	2.0929	н	-9.86853	-0.19595	-2.93413
С	-6.31316	-0.71493	0.99664	н	-10.3833	-1.0869	-0.87741
С	4.63447	3.76614	0.29996	Н	-6.82801	-1.49039	1.54869
С	2.53428	-0.87183	-1.9258	Н	5.25355	4.65267	0.39726
С	1.19436	3.51746	-2.36125	Н	1.48987	3.55052	-3.40761
N	0.59653	2.39079	-1.95335	Н	0.10042	3.23926	1.28038
С	0.22596	2.31745	-0.66449	Н	1.23338	5.33582	0.50026
С	0.42067	3.35306	0.2504	Н	1.93669	5.48973	-1.9088
С	1.05131	4.51638	-0.18827	Н	-6.76566	2.13026	-0.82995
С	1.44274	4.60407	-1.5225	Н	7.90265	-1.94309	0.11481
С	-6.27895	1.30272	-0.33136	Н	-2.58764	-2.03582	0.45965
C	6.85177	-1.67127	0.13426	Н	0.69542	-0.53716	5.1999
C	-2.03507	-1.12543	0.27379	Н	4.11451	3.70038	2.38462

С	1.20755	0.01282	4.41323	Н	-4.43035	-1.59932	1.4203
С	4.75464	-1.32151	-1.01951	Н	5.30101	-1.99447	-3.6591
С	0.09306	-2.43494	0.36466	Н	3.6915	-1.92918	-5.52674
С	3.99235	3.23733	1.41279	Н	-8.56439	-0.64232	2.26804
С	-4.93268	-0.78434	0.90841	Н	-10.0643	0.0535	1.67546
С	3.20484	2.08749	1.29062	Н	-2.35303	2.18354	-0.32097
C	4.28022	-1.67284	-3.47272	Н	4.94601	3.52309	-1.83511
С	-2.7193	0.08749	0.10707	Н	-1.5748	-3.78647	0.56982
С	3.37426	-1.63816	-4.52913	Н	-8.69601	2.44372	-0.06493
С	-0.53367	1.09443	-0.27632	Н	-10.1578	1.48786	0.12477
С	-9.15547	-0.46903	1.36274	Н	6.5791	-1.94222	-1.97848
С	-1.915	1.20345	-0.1769	Н	-9.55943	2.17595	-2.23929
С	-0.6509	-1.18317	0.18698	Н	-8.20782	1.02543	-2.17923
С	4.47212	3.14334	-0.93698	Н	3.50901	1.49172	-1.94409
С	-4.17952	0.17638	0.20675	Н	-0.14179	-5.78631	0.85346
C	2.51823	1.41349	2.39769	Н	4.35452	-0.68995	2.20455
С	-0.49711	-3.68742	0.55133	Н	3.29324	-3.22531	0.45239
С	-9.13657	1.45858	-0.26236	Н	1.34313	-1.21397	-5.11898
С	6.11034	-1.67231	-1.03985	Н	0.61713	-0.54582	-2.85958
С	-9.19876	1.24913	-1.77228	Н	6.77058	-1.30223	2.27421
С	3.67214	2.01208	-1.01055	Н	2.81823	2.95736	3.897
С	-7.03975	0.33646	0.3784	Н	-4.37313	1.9793	-0.97677
С	0.30724	-4.80929	0.70896	Н	1.65897	1.70584	5.68129
С	4.88864	-0.97411	1.30783	Н	0.88016	-1.51732	2.9477
С	2.22585	-3.39115	0.48475	Н	-8.68429	-2.27756	0.26416
C	2.0539	-1.23498	-4.2955	н	-9.88453	-2.48051	1.55183
C	1.6468	-0.86023	-3.012	н	2.36175	-5.50247	0.79208

Table S3 The xyz coordinates for complex Ir1A

С	-3.91092	4.1347	1.12162	N	8.36659	-0.01772	-0.4561
С	-4.27942	3.56176	-0.10183	С	9.11879	-1.26619	-0.33976
С	-3.81627	2.29482	-0.46262	С	9.10272	-1.83959	1.07539
С	-2.9683	1.5624	0.3804	0	9.90154	-3.02228	1.05419
С	-2.60654	2.15829	1.61726	C	9.03147	1.22346	-0.05232
С	-3.07261	3.43152	1.98087	С	10.51912	1.26793	-0.38368
С	-4.53391	-0.90043	2.17754	0	10.91912	2.62168	-0.16953
С	-5.84791	-1.23685	2.51378	Н	-4.27641	5.11896	1.40054
С	-6.7976	-1.48304	1.51534	Н	-4.93227	4.10909	-0.77807
С	-6.42611	-1.39644	0.17622	Н	-4.11896	1.87639	-1.41853
С	-5.10658	-1.06103	-0.16424	Н	-2.79145	3.87222	2.93309
С	-4.133	-0.8063	0.83788	н	-3.81771	-0.7069	2.97113
С	-1.73602	1.34905	2.46646	н	-6.13564	-1.30405	3.56043
С	-4.61629	-0.99231	-1.54191	Н	-7.81878	-1.74162	1.78052
N	-1.481	0.09687	1.97974	Н	-7.16282	-1.59333	-0.59741
С	-0.7073	-0.75526	2.67875	Н	-0.56251	-1.73777	2.24872
С	-0.12948	-0.40748	3.88981	Н	0.48743	-1.12689	4.41652
С	-0.36249	0.87328	4.39722	Н	0.07867	1.18318	5.33952
С	-1.16952	1.74913	3.68298	н	-1.36169	2.74643	4.06038
С	-5.36822	-1.22278	-2.69898	Н	-6.42646	-1.44184	-2.61702
С	-4.75582	-1.17635	-3.94566	Н	-5.3376	-1.35177	-4.84529
С	-3.38509	-0.9191	-4.02511	Н	-2.86307	-0.89534	-4.97508

С	-2.68494	-0.69058	-2.85012	Н	-1.62031	-0.50013	-2.84407
N	-3.28513	-0.69965	-1.64655	Н	6.78532	-2.15545	-0.98171
Ir	-2.31254	-0.3366	0.1357	Н	4.38599	-2.17547	-1.0633
С	6.26252	-1.23737	-0.74575	Н	4.28821	1.96802	0.10962
С	4.87847	-1.2499	-0.78198	Н	6.69135	2.01446	0.18045
С	4.11389	-0.1007	-0.50144	Н	2.41918	-2.24473	-0.25529
C	4.82486	1.06473	-0.16407	Н	2.38456	1.99914	-0.95063
C	6.21084	1.09285	-0.11997	Н	-2.54277	-5.59325	0.07893
C	6.98144	-0.05506	-0.43312	Н	-3.38965	-3.26384	0.37223
C	1.9112	-1.30716	-0.43569	н	1.31983	-3.92048	-0.81659
С	0.52312	-1.28754	-0.48211	н	-0.12103	-5.91874	-0.52868
N	-0.18769	-0.13536	-0.62821	н	-0.91739	1.5295	-3.05273
С	0.50354	1.01272	-0.81176	н	0.36892	3.28855	0.65014
C	1.8962	1.04957	-0.76977	н	-0.7123	5.42767	0.0094
С	2.64736	-0.11708	-0.55986	н	-1.8934	5.62097	-2.17012
C	-1.87329	-4.74956	-0.04694	Н	-1.99418	3.66173	-3.69977
C	-2.35468	-3.45699	0.11779	Н	8.72712	-2.0039	-1.04339
N	-1.56943	-2.37611	-0.02289	н	10.15166	-1.08936	-0.64084
С	-0.26319	-2.53194	-0.34178	н	9.5087	-1.10042	1.78132
С	0.28091	-3.80524	-0.53346	н	8.07069	-2.06273	1.38021
C	-0.53105	-4.92483	-0.38092	Н	9.90267	-3.39288	1.9518
C	-0.88724	2.37683	-2.37668	Н	8.57202	2.05077	-0.60055
C	-0.22156	2.26407	-1.14938	Н	8.89531	1.4274	1.02065
C	-0.1494	3.37486	-0.30031	Н	11.09947	0.59415	0.2595
С	-0.75636	4.57689	-0.6644	н	10.68077	0.97027	-1.43002
C	-1.42242	4.68368	-1.88749	н	11.8809	2.66284	-0.2981
С	-1.48386	3.58224	-2.74391				

Table S4 The xyz coordinates for complex Ir1B

С	2.42887	1.03375	-3.80988	0	-9.53713	-2.26863	1.96664
С	2.00128	0.68095	-2.52666	lr	2.51663	-0.09063	0.39136
С	2.92882	0.42483	-1.51113	Cl	2.17326	-0.75224	2.82999
C	4.30981	0.53182	-1.81134	0	-10.4691	2.43202	-1.31624
С	4.73308	0.88614	-3.10203	С	-8.65779	-1.1907	0.04132
С	3.79362	1.13636	-4.09904	С	-8.78802	-1.12391	1.56145
С	6.62284	0.30106	-0.76007	н	4.12282	1.41088	-5.09705
С	5.22622	0.2565	-0.70169	Н	7.11649	0.55645	-1.69008
N	4.60642	-0.0666	0.47272	Н	4.75975	-0.58315	2.46081
C	5.33155	-0.3394	1.5734	Н	7.26649	-0.53428	2.47278
С	6.71833	-0.30812	1.56496	Н	8.45713	0.0516	0.33305
С	7.37281	0.018	0.37533	Н	-6.23156	2.03129	-0.86315
С	-5.74691	1.10022	-0.60206	Н	-3.83199	2.01818	-0.70315
С	-4.36414	1.09456	-0.49547	Н	-3.90634	-2.15285	0.36628
С	-3.64939	-0.0693	-0.1623	Н	-6.30258	-2.16801	0.19712
С	-4.40433	-1.23502	0.06843	Н	-1.94111	-2.14874	-0.60498
С	-5.78608	-1.24289	-0.02314	Н	-2.02865	2.0071	0.5595
С	-6.50908	-0.07425	-0.37732	Н	3.59395	-5.02499	-0.86426
С	-1.44014	-1.24099	-0.29412	Н	4.16412	-2.69426	-0.16305
C	-0.05806	-1.22395	-0.16363	Н	-0.54833	-3.84332	-0.94188
N	0.55914	-0.07735	0.19166	Н	1.17974	-5.6042	-1.26029
C	-1.48688	1.09874	0.32884	н	-0.69846	3.71661	1.04085

C	-0.10319	1.07281	0.43778	н	4.05926	2.50611	1.22011
C	-2.18567	-0.06923	-0.0441	Н	3.39588	4.85844	1.74104
C	2.8086	-4.2887	-0.73597	Н	0.95911	5.46944	1.64651
С	3.13976	-2.99539	-0.34553	Н	-8.41598	1.86388	0.17064
N	2.20628	-2.04916	-0.17079	Н	-8.11769	1.71334	-1.56367
С	0.88238	-2.34233	-0.3823	Н	-10.238	0.41895	-1.82844
С	0.4989	-3.62064	-0.7753	Н	-10.6112	0.73779	-0.1164
С	1.46993	-4.60465	-0.95398	Н	-11.4359	2.42041	-1.40543
С	0.3572	3.47844	1.09116	Н	-9.65247	-1.19664	-0.40616
С	0.79202	2.18646	0.81321	Н	-8.19847	-2.13847	-0.24775
N	2.12745	1.87562	0.87132	Н	-7.79189	-1.11748	2.02551
С	3.02283	2.81967	1.19487	Н	-9.29801	-0.19348	1.8506
С	2.63994	4.12549	1.48314	Н	-9.62598	-2.23466	2.93306
С	1.28887	4.45883	1.4296	Н	1.69496	1.22936	-4.58781
N	-7.88734	-0.07991	-0.5142	Н	0.93649	0.60885	-2.32408
С	-8.56253	1.20818	-0.7008	Н	5.79087	0.96811	-3.334
C	-10.0559	1.10476	-0.98874				

Table S5 The xyz coordinates for complex Ir2A

C	2.45973	-0.26386	3.92223	С	-8.61161	1.30546	-0.16221
С	2.03256	-0.15494	2.59707	С	-10.0976	1.38118	0.16955
С	2.95578	-0.09024	1.54204	0	-10.5523	2.60697	-0.40569
С	4.33798	-0.13331	1.86678	Ir	2.54712	0.03895	-0.41537
С	4.76259	-0.24276	3.20081	Cl	2.22098	0.11076	-2.96609
С	3.82542	-0.30823	4.22823	0	-9.43782	-3.09027	-0.11797
С	6.65062	-0.06725	0.79492	н	0.96716	-0.1198	2.38665
C	5.25283	-0.05447	0.72762	н	5.82168	-0.2749	3.44094
N	4.62784	0.042	-0.48554	н	4.15461	-0.3917	5.26017
С	5.35853	0.1293	-1.61344	н	7.14092	-0.14892	1.75806
С	6.74573	0.12592	-1.59814	н	4.78736	0.20075	-2.53143
С	7.40291	0.02422	-0.36961	н	7.29276	0.20056	-2.53164
С	-5.74667	-0.91666	0.84668	н	8.48759	0.01667	-0.32078
С	-4.36487	-0.93088	0.73655	н	-6.22712	-1.7642	1.31834
С	-3.65432	0.13084	0.14745	Н	-3.82658	-1.78201	1.14344
С	-4.41228	1.2113	-0.33301	н	-3.91661	2.03913	-0.83159
С	-5.79748	1.23598	-0.23958	н	-6.31942	2.08362	-0.66316
С	-6.51335	0.17542	0.36805	н	-1.92954	2.24553	0.15809
С	-1.43476	1.29047	0.03123	н	-2.04738	-2.04966	-0.15277
С	-0.04762	1.2517	-0.09658	н	3.55133	5.20105	-0.13594
N	0.56761	0.04651	-0.21582	н	4.26887	2.84927	-0.36103
C	-0.11286	-1.12219	-0.22175	н	-0.55393	3.96743	0.12606
C	-1.49738	-1.1186	-0.10803	н	1.14232	5.76923	0.10466
С	-2.18706	0.10336	0.02447	н	-0.81223	-3.81046	-0.22589
C	2.80619	4.40837	-0.12997	н	3.97542	-2.85333	-0.7212
C	3.20998	3.07523	-0.2566	н	3.22008	-5.23985	-0.71667
C	2.27832	2.02852	-0.25489	н	0.76306	-5.7146	-0.46339
С	0.89798	2.37799	-0.10688	Н	-8.1515	-1.58223	1.56046
С	0.49806	3.71565	0.01828	Н	-9.62979	-0.79658	1.08796
C	1.4517	4.7324	0.00631	н	-9.21851	-1.38312	-1.30696
С	0.24929	-3.62805	-0.34278	н	-7.7006	-2.18082	-0.8456
С	0.74215	-2.32264	-0.35896	Н	-9.49945	-3.66276	-0.89989

N	2.07741	-2.08615	-0.49599	Н	-8.17537	2.25498	0.16279
C	2.92736	-3.11364	-0.61772	Н	-8.49627	1.25367	-1.25586
С	2.49792	-4.43723	-0.61406	Н	-10.6504	0.53392	-0.25553
С	1.1353	-4.6952	-0.47383	Н	-10.2473	1.37887	1.25892
N	-7.89595	0.21513	0.50534	Н	-11.5173	2.63549	-0.30185
С	-8.62192	-1.03137	0.74313	Н	1.72511	-0.31241	4.72298
С	-8.70933	-1.92202	-0.49472				

Table S6 The xyz coordinates for complex Ir2B

Complex	Ir1A	Ir1B	Ir2A	Ir2B
Lifetime(ns)	3.104 ± 0.127	$2.913 {\pm} 0.070$	3.089 ± 0.056	3.242 ± 0.053
quantum yield	0.64	0.80	0.54	0.90

Table S7 The lifetime and quantum yield for the four complexes

Details for the fit of emission decay curve

Ir2A

Ir2B