pH-dependent selective extraction of gold (III) from synthetic solution and

computer motherboard leachate using a hybrid nanocomposite

Rabeea D. Abdel-Rahim, Mahmoud Thabet, Ahmed R. Abdellah, Mohamed O. Saleh,

Ahmed M. M. Fadl, Adham M. Nagiub, Hassanien Gomaa*

Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt. * Corresponding author: H. Gomaa (<u>h.gomaa@azhar.edu.eg</u>)

Chemicals

The consumed substances were high quality, so we used them as obtained without any additional purification. Hydrontetrachlorogold (HAuCl₄), Cobalt(II) acetate $(Co(C_2H_3O_2)_2.4H_2O)$, and nickel(II) acetate tetrahydrate $(Ni(C_2H_3O_2)_2.4H_2O)$ were obtained from Innochem (Beijing) Technology Co., Ltd. Urea, thiourea, and polyvinylpyrrolidone (PVP, M wt. 55K) were attained from Shanghai Aladdin Bio-Chem Technology Co., Ltd.

Characterization Tools

The structural and compositional attributes of $g-C_3N_4$ and $CoNi_2S_4@g-C_3N_4$ were systematically characterized through a suite of analytical techniques. Scanning electron microscopy (SEM) investigations, conducted with a GAIA3 Tescan instrument at an electron acceleration voltage of 20 kV, were complemented by energy-dispersive X-ray spectroscopy (EDS) to elucidate the surface morphology and elemental composition. High-resolution transmission electron microscopy (HRTEM) was performed on a JEM-2100F microscope at 200 kV to provide detailed insights into the nanostructures of the materials. X-ray photoelectron spectroscopy (XPS) analyses were carried out using an ESCALAB 250XI instrument with an aluminum K-alpha X-ray source, set at 12 mA and 14.5 kV, to probe the surface chemical states and elemental composition. The crystalline phases of the samples were determined by X-ray diffraction (XRD) using a Rigaku SmartLab diffractometer, employing copper K-alpha radiation at a wavelength of 0.15406 nm, with the system operating at 40 kV and 150 mA. The porosity, including pore size distribution and specific surface area, was quantified through nitrogen adsorption-desorption isotherm measurements using a NOVA 2200e analyzer. Lastly, the surface charge characteristics of the materials were assessed using a Zetasizer Nano ZS (Model: ZEN 3600, Malvern, UK) to measure the zeta potential.

Figure S1. EDX patterns of g- C_3N_4 (A) and $CoNi_2S_4@g$ - C_3N_4 (B) adsorbents.

Figure S2. XPS survey (A) and spectra of C1s (B), and N1s (C) of $g-C_3N_4$ sample.

Figure S3. N₂-adsorption-desorption analysis (A) and BJH (B) of mesoporous $g-C_3N_4$ and $CoNi_2S_4@g-C_3N_4$ adsorbents.

Figure S4. Au(III)-adsorption capacity of g-C₃N₄ CoNi₂S₄, and CoNi₂S₄@g-C₃N₄ nanocomposite at optimal adsorption conditions.