#### *In vivo* Determination of Analgesic and Anti-inflammatory Activities of Isolated Compounds from *Cleome amblyocarpa* and Molecular Modelling for the Top Active Investigated Compounds.

Mayada M. El-Ayouty, <sup>a, †</sup> Nermeen A. Eltahawy, <sup>b, †</sup> Ahmed M. Abd EL-sameaa, <sup>a</sup> Ahmed M. Badawy, <sup>a</sup> Khaled M.

Darwish, <sup>c</sup> Sameh S. Elhady, <sup>d,e</sup> Mostafa M. Shokr, <sup>f</sup> and Safwat A. Ahmed, <sup>\* b</sup>

<sup>a</sup> Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45511, Egypt; <u>miada.mohamed@su.edu.eg (M.M.E.); ahmed. abdelsameaa@su.edu.eg (A.M.A); ahmed.badawy@su.edu.eg (A.M.B.)</u>

<sup>b</sup> Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; <u>Nermeenazmy25@gmail.com</u> (N.A.E)

<sup>c</sup> Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; <u>Khaled\_darwish@pharm.suez.edu.eg</u> (K.M.D).

<sup>d</sup> King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; <u>ssahmed@kau.edu.sa</u> (S.S.E.)

<sup>e</sup> Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

<sup>f</sup> Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University – Arish Branch, Arish, 45511, Egypt; <u>mostafa.mohsen@su.edu.eg</u> (M.M.S.)

Correspondence: <u>safwat\_aa@yahoo.com</u> or <u>safwat\_ahmed@pharm.suez.edu.eg</u> (S.A.A.); Tel.: +20-010-92638387; Fax: +20-064-323074

*†* Both authors contributed equally to this work and share first authorship.

#### List of figures: -

| Figure 1: LC-MS/MS of compound 115                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------|
| Figure 2: <sup>1</sup> H-NMR spectrum of compound 1 (300 MHz, DMSO- <i>d6</i> )16                                            |
| Figure 3: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 1 (300 MHz, DMSO- <i>d6</i> )17                       |
| Figure 4: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 1 (300 MHz, DMSO- <i>d6</i> )18                       |
| Figure 5: <sup>13</sup> C-NMR spectrum of compound 1 (75 MHz, DMSO- <i>d6</i> )19                                            |
| Figure 6: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 1 (75 MHz, DMSO- <i>d6</i> )20                       |
| Figure 7: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 1 (75 MHz, DMSO- <i>d6</i> )21                       |
| Figure 8: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 1 (75 MHz, DMSO- <i>d6</i> )22                       |
| Figure 9: <sup>1</sup> H-NMR spectrum of compound 2 (300 MHz, DMSO- <i>d6</i> )22                                            |
| Figure 10: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 2 (400 MHz, DMSO- <i>d6</i> )24                      |
| Figure 11: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 2 (400 MHz, DMSO- <i>d6</i> )25                      |
| Figure 12: <sup>13</sup> C-NMR spectrum of compound 2 (100 MHz, DMSO- <i>d6</i> )26                                          |
| Figure 13: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 2 (100 MHz, DMSO- <i>d6</i> )27                     |
| Figure 14: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 2 (100 MHz, DMSO- <i>d6</i> )28                     |
| Figure 15: <sup>1</sup> H-NMR spectrum of compound 3 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)29                      |
| Figure 16: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 3 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)30 |
| Figure 17: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 3 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)31 |
| Figure 18: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 3 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)32 |
| Figure 19: <sup>13</sup> C-NMR spectrum of compound 3 (75 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)33                      |

| Figure 20: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 3 (75 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD) | 34 |
|----------------------------------------------------------------------------------------------------------------------------|----|
| Figure 21: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 3 (75 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD) | 35 |
| Figure 22: <sup>1</sup> H -NMR spectrum of compound 4 (300 MHz, CDCl <sub>3</sub> )                                        | 36 |
| Figure 23: Partial expansion of <sup>1</sup> H -NMR spectrum of compound 4 (300 MHz, CDCl <sub>3</sub> )                   | 37 |
| Figure 24: Partial expansion of <sup>1</sup> H -NMR spectrum of compound 4 (300 MHz, CDCl <sub>3</sub> )                   | 38 |
| Figure 25: Partial expansion of <sup>1</sup> H -NMR spectrum of compound 4 (300 MHz, CDCl <sub>3</sub> )                   | 39 |
| Figure 26: <sup>13</sup> C-NMR spectrum of compound 4 (75 MHz, CDCl <sub>3</sub> )                                         | 40 |
| Figure 27: Partial expansion of <sup>13</sup> C -NMR spectrum of compound 4 (75 MHz, CDCl <sub>3</sub> )                   | 41 |
| Figure 28: Partial expansion of <sup>13</sup> C -NMR spectrum of compound 4 (75 MHz, CDCl <sub>3</sub> )                   | 42 |
| Figure 29: <sup>1</sup> H-NMR spectrum of compound 5 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)                      | 43 |
| Figure 30: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 5 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD) | 44 |
| Figure 31: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 5 (300 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD) | 45 |
| Figure 32: <sup>13</sup> C-NMR spectrum of compound 5 (75 MHz, CDCl <sub>3</sub> -CD <sub>3</sub> OD)                      | 46 |
| Figure 33: EI-MS of Compound 6                                                                                             | 47 |
| Figure 34: UV-Vis spectrum analysis of Compound 6                                                                          | 48 |
| Figure 35: <sup>1</sup> H-NMR spectrum of compound 6 (300 MHz, CD <sub>3</sub> OD)                                         | 49 |
| Figure 36: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 6 (300 MHz, CD <sub>3</sub> OD)                    | 50 |
| Figure 37: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 6 (300 MHz, CD <sub>3</sub> OD)                    | 51 |
| Figure 38: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 6 (300 MHz, CD <sub>3</sub> OD)                    | 52 |
| Figure 39: LC-MS/MS of compound 7                                                                                          | 53 |
| Figure 40: <sup>1</sup> H-NMR spectrum of compound 7 (300 MHz, CDCl <sub>3</sub> )                                         | 54 |
| Figure 41: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 7 (300 MHz, CDCl <sub>3</sub> )                    | 55 |
| Figure 42: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 7 (300 MHz, CDCl <sub>3</sub> )                    | 56 |
| Figure 43: <sup>13</sup> C-NMR spectrum of compound 7 (75 MHz, CDCl <sub>3</sub> )                                         | 57 |
| Figure 44: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 7 (75 MHz, CDCl <sub>3</sub> )                    | 58 |
| Figure 45: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 7 (75 MHz, CDCl <sub>3</sub> )                    | 59 |
| Figure 46: LC-MS/MS of compound 8                                                                                          | 60 |
| Figure 47: <sup>1</sup> H-NMR spectrum of compound 8 (300 MHz, CDCl <sub>3</sub> )                                         | 61 |
| Figure 48: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 8 (300 MHz, CDCl <sub>3</sub> )                    | 62 |
| Figure 49: Partial expansion of 1H-NMR spectrum of compound 8 (300 MHz, CDCl <sub>3</sub> )                                | 63 |
| Figure 50: <sup>13</sup> C-NMR spectrum of compound 8 (75 MHz, CDCl <sub>3</sub> )                                         | 64 |
| Figure 51: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 8 (75 MHz, CDCl <sub>3</sub> )                    | 65 |
| Figure 52: EI-MS of Compound 9                                                                                             | 66 |
| Figure 53: <sup>1</sup> H-NMR spectrum of compound 9 (300 MHz, CDCl <sub>3</sub> )                                         | 67 |
| Figure 54: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 9 (300 MHz, CDCl <sub>3</sub> )                    | 68 |
| Figure 55: <sup>13</sup> C-NMR spectrum of compound 9 (75 MHz, CDCl <sub>3</sub> )                                         | 69 |
| Figure 56: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 9 (75 MHz, CDCl <sub>3</sub> )                    | 70 |
| Figure 57: <sup>1</sup> H-NMR spectrum of compound 10 (300 MHz, CDCl <sub>3</sub> )                                        | 71 |
| Figure 58: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 10 (300 MHz, CDCl <sub>3</sub> )                   | 72 |
| Figure 59: Partial expansion of <sup>1</sup> H-NMR spectrum of compound 10 (300 MHz, CDCl <sub>3</sub> )                   | 73 |
| Figure 60: <sup>13</sup> C-NMR spectrum of compound 10 (75 MHz, CDCl <sub>3</sub> )                                        | 74 |
| Figure 61: Partial expansion of <sup>13</sup> C-NMR spectrum of compound 10 (75 MHz, CDCl <sub>3</sub> )                   | 75 |

## List of tables: -

| Table 1: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in DMSO-d6 spectra data of compound (1)                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              |
| Table 2: <sup>1</sup> H-NMR (400 MHz) and <sup>13</sup> C-NMR (75 MHz) in DMSO- <i>d6</i> spectra data of compound (2)5                      |
| Table 3: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl <sub>3</sub> -CD <sub>3</sub> OD spectra data of compound (3) |
|                                                                                                                                              |
| Table 4: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl <sub>3</sub> spectra data of compound (4)7                    |
| Table 5: Table: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl <sub>3</sub> -CD <sub>3</sub> OD spectra data of       |
| compound (5)                                                                                                                                 |
| Table 6: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CD <sub>3</sub> OD spectra data of compound (6)9                   |
| Table 7: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl <sub>3</sub> spectra data of compound (7)10                   |
| Table 8: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl3 spectra data of compound (8)11                               |
| Table 9: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl <sub>3</sub> spectra data of compound (9)12                   |
| Table 10: <sup>1</sup> H-NMR (300 MHz) and <sup>13</sup> C-NMR (75 MHz) in CDCl <sub>3</sub> spectra data of compound (10)13                 |

### Table 1: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in DMSO-d6 spectra data of compound (1)



| Position | $\delta_H$ ppm (No. of H, <i>m</i> , <i>J</i> Hz) | $\delta_C(\text{ppm})$ |
|----------|---------------------------------------------------|------------------------|
| 2        | -                                                 | 156.2                  |
| 3        | -                                                 | 134.6                  |
| 4        | -                                                 | 178.0                  |
| 5        | -                                                 | 161.0                  |
| 6        | 6.44 (1H, <i>d</i> , <i>J</i> = 2.3 Hz)           | 98.5                   |
| 7        | -                                                 | 161.8                  |
| 8        | 6.76 (1H, <i>d</i> , <i>J</i> = 2.2Hz)            | 94.7                   |
| 9        | -                                                 | 157.9                  |
| 10       | -                                                 | 105.9                  |
| 1`       | -                                                 | 120.4                  |
| 2`,6`    | 7.78 (2H, <i>d</i> , <i>J</i> = 8.7 Hz)           | 130.8                  |
| 3`,5`    | 6.93 (2H, <i>d</i> , <i>J</i> = 8.7 Hz)           | 115.6                  |
| 4`       | -                                                 | 160.3                  |
| 1``      | 5.29 (1H, <i>d</i> , <i>J</i> = 1.2 Hz)           | 102.0                  |
| 2``      |                                                   | 70.4                   |
| 3``      |                                                   | 70.8                   |
| 4``      | $3 15 \cdot 5 13 (8H m)$                          | 71.7                   |
| 5``      | 5.15. 5.15 (611, 11)                              | 70.2                   |
| 6``      | 0.81 (3H, <i>d</i> , <i>J</i> = 6Hz)              | 18.0                   |
| 1```     | 5.54 (1H, <i>d</i> , <i>J</i> = 1.2 Hz)           | 99.6                   |
| 2```     |                                                   | 70.3                   |
| 3```     |                                                   | 70.4                   |
| 4```     | $3 15 \cdot 5 13 (8H m)$                          | 71.2                   |
| 5```     | 5.15. 5.15 (011, 11)                              | 69.9                   |
| 6```     | 1.13 (3H, <i>d</i> , <i>J</i> = 6 Hz)             | 17.6                   |

#### Table 2: <sup>1</sup>H-NMR (400 MHz) and <sup>13</sup>C-NMR (75 MHz) in DMSO-*d6* spectra data of compound (2)



| Position | δ <sub>H</sub> ppm (No. of H, <i>m</i> ,<br><i>J</i> Hz) | $\delta_C(\text{ppm})$ | Position | δ <sub>H</sub> ppm (No. of H, <i>m</i> , J<br>Hz) | δ <sub>C</sub><br>(ppm) |
|----------|----------------------------------------------------------|------------------------|----------|---------------------------------------------------|-------------------------|
| 1        |                                                          | 36.7                   | 19       | 1.02 (3H, <i>s</i> )                              | 19.6                    |
| 2        |                                                          | 29.7                   | 20       |                                                   | 36.0                    |
| 3        | 3.50 (1H, <i>m</i> )                                     | 77.2                   | 21       | 0.96 (3H, <i>d</i> , <i>J</i> =6.3 Hz)            | 19.1                    |
| 4        |                                                          | 38.8                   | 22       |                                                   | 33.8                    |
| 5        |                                                          | 140.9                  | 23       |                                                   | 25.9                    |
| 6        | 5.38 (1H, <i>m</i> )                                     | 121.6                  | 24       |                                                   | 45.6                    |
| 7        |                                                          | 31.9                   | 25       |                                                   | 29.2                    |
| 8        |                                                          | 31.8                   | 26       | 0.90 (3H, <i>d</i> , <i>J</i> =6.6 Hz)            | 20.2                    |
| 9        |                                                          | 50.1                   | 27       | 0.86 (3H, <i>d</i> , <i>J</i> =6.6 Hz)            | 19.4                    |
| 10       |                                                          | 36.7                   | 28       |                                                   | 23.1                    |
| 11       |                                                          | 21.1                   | 29       | 0.86 (3H, <i>t</i> , <i>J</i> =7 Hz)              | 12.2                    |
| 12       |                                                          | 37.3                   | 1`       | 4.28 (1H, <i>d</i> , <i>J</i> =7.8)               | 101.3                   |
| 13       |                                                          | 42.3                   | 2`       |                                                   | 73.9                    |
| 14       |                                                          | 56.7                   | 3`       | 3.13 -3.48 (4H, <i>m</i> )                        | 77.4                    |

| 15 |              | 24.3 | 4` |                                                                            | 70.5 |
|----|--------------|------|----|----------------------------------------------------------------------------|------|
| 16 |              | 28.3 | 5` |                                                                            | 77.2 |
| 17 |              | 55.9 | 6` | 3.63 (1Ha, <i>dd</i> , <i>J</i> =10.4,<br>5.2Hz)<br>3.18 (1Hb, <i>m</i> ), | 61.5 |
| 18 | 0.71 (3H, s) | 12.1 |    |                                                                            |      |

Table 3: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CDCl<sub>3</sub>-CD<sub>3</sub>OD spectra data of compound (3)



| Position     | $\delta_H$ ppm (No. of H, <i>m</i> , <i>J</i> Hz) |                      | $\delta_C(\text{ppm})$ |
|--------------|---------------------------------------------------|----------------------|------------------------|
| 1            | 5.17 (1H, <i>br d</i> , <i>J</i> =5 Hz)           |                      | 80.4                   |
|              | 2 a                                               | 3.21 (1H, <i>m</i> ) |                        |
| 2            | 2 b                                               | 3.09 (1H, <i>m</i> ) | 37.9                   |
| 3            |                                                   |                      | 174.9                  |
| 4            |                                                   | -                    | 86.6                   |
| 5            |                                                   | 1.97 (1H, <i>m</i> ) | 53.9                   |
| 6            | 6 a                                               | 1.76 (1H, <i>m</i> ) | - 24.4                 |
|              | 6 b                                               | 1.41 (1H, <i>m</i> ) | 27.7                   |
| 7            | 7 a                                               | 1.25 (1H, <i>m</i> ) | 35.7                   |
| ,            | 7 b                                               | 1.66 (1H, <i>m</i> ) | 55.7                   |
| 8            |                                                   |                      | 51.8                   |
| 9            | 1.94 (1H, <i>m</i> )                              |                      | 52.1                   |
| 10           | -                                                 |                      | 45.0                   |
| 11           |                                                   | 5.10 (1H, <i>m</i> ) | 73.6                   |
| 12 overlaps  | 12 a                                              | 1.48 (1H, <i>m</i> ) |                        |
| 12 0 veriups | 12 b                                              | 1.90 (1H, <i>m</i> ) | 54.7                   |
| 13           | 1.77 (1H, <i>m</i> )                              |                      | 40.9                   |
| 14           | -                                                 |                      | 43.2                   |
| 15           | 4.93 (1H, <i>m</i> )                              |                      | 74.8                   |
| 16           | 16 a                                              | 1.70 (1H, <i>m</i> ) |                        |
| 10           | 16 b                                              | 2.06(1H, <i>m</i> )  | 55.4                   |

| 17                | 2.18 (1H, <i>m</i> )                  | 45.5  |
|-------------------|---------------------------------------|-------|
| 18                | 1.36 (3H, <i>s</i> )                  | 27.3  |
| 19                | 1.43 (3H, <i>s</i> )                  | 30.9  |
| 20                | -                                     | 92.8  |
| 21                | 1.40 (3H, <i>s</i> )                  | 24.4  |
| 22                | 7.71 (1H, <i>d</i> , <i>J</i> = 6 Hz) | 161.1 |
| 23                | 6.14 (1H, d, J = 6 Hz)                | 122.5 |
| 24                | -                                     | 174.2 |
| 25                | -                                     | -     |
| 26                | -                                     | -     |
| 27                | -                                     | -     |
| 28                | 1.18 (3H, <i>s</i> )                  | 15.5  |
| 29                | 1.17 (3H, <i>s</i> )                  | 18.0  |
| 30                | 1.16 (3H, <i>s</i> )                  | 11.2  |
| <u>CO</u> CH3 1   | -                                     | 172.0 |
| CO <u>CH3 1a</u>  | 1.97 (3H, s)                          | 21.9  |
| <u>CO</u> CH3 11  | -                                     | 172.3 |
| CO <u>CH3 11ª</u> | 1.93 (3H, <i>s</i> )                  | 22.2  |
| <u>CO</u> CH3 15  | -                                     | 172.4 |
| CO <u>CH3 15ª</u> | 2.00 (3H, <i>s</i> )                  | 22.3  |

Table 4: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CDCl<sub>3</sub> spectra data of compound (4)



| Position | δι                                     | 7 ppm (No. of H, <i>m</i> , <i>J</i> Hz)       | $\delta_C(\mathrm{ppm})$ |
|----------|----------------------------------------|------------------------------------------------|--------------------------|
| 1        | 5.17 (1H, <i>d</i> , <i>J</i> =5.9 Hz) |                                                | 72.6                     |
|          | 2 a                                    | 3.18 (1H, <i>dd</i> , <i>J</i> = 15.6, 5.4 Hz) |                          |
| 2        | 2 b                                    | 2.91 (1H, <i>br d</i> , <i>J</i> = 15.9 Hz)    | 36.9                     |
| 3        | -                                      |                                                | 172.1                    |
| 4        | _                                      |                                                | 84.5                     |
| 5        |                                        |                                                | 41.8                     |
| 6        |                                        |                                                | 23.4                     |

| 7                      |                                         | 30.4  |
|------------------------|-----------------------------------------|-------|
| 8                      | -                                       | 41.4  |
| 9                      |                                         | 46.4  |
| 10                     | -                                       | 43.8  |
| 11                     | 5.16 (1H, <i>m</i> )                    | 78.7  |
| 12                     |                                         | 34.3  |
| 13                     |                                         | 51.0  |
| 14                     | -                                       | 50.0  |
| 15                     |                                         | 34.7  |
| 16                     |                                         | 28.9  |
| 17                     |                                         | 53.4  |
| 18                     | 0.92 (3H, <i>s</i> )                    | 14.3  |
| 19                     | 1.11 (3H, <i>s</i> )                    | 15.6  |
| 20                     | -                                       | 91.1  |
| 21                     | 1.21 (3H, <i>s</i> )                    | 17.0  |
| 22                     | 7.34 (1H, <i>d</i> , <i>J</i> = 5.6 Hz) | 159.4 |
| 23                     | 6.05 (1H, <i>d</i> , <i>J</i> = 5.6 Hz) | 121.0 |
| 24                     | -                                       | 172.2 |
| 25                     | -                                       | -     |
| 26                     | -                                       | -     |
| 27                     | -                                       | -     |
| 28                     | 1.46 (3H, <i>s</i> )                    | 30.2  |
| 29                     | 1.41 (3H, <i>s</i> )                    | 26.5  |
| 30                     | 1.43 (3H, <i>s</i> )                    | 23.1  |
| <u>CO</u> CH3 <u>1</u> | -                                       | 170.6 |
| CO <u>CH3 1ª</u>       | 2.00 (3H, <i>s</i> )                    | 21.6  |
| <u>CO</u> CH3 11       | -                                       | 170.4 |
| CO <u>CH3 11ª</u>      | 1.94 (3H, <i>s</i> )                    | 21.5  |
|                        |                                         |       |

# Table 5: Table: 1H-NMR (300 MHz) and 13C-NMR (75 MHz) in CDCl<sub>3</sub>-CD<sub>3</sub>OD spectra data of<br/>compound (5)



| Position | $\delta_H$ ppm (No. of H, <i>m</i> , <i>J</i> Hz) | $\delta_C(\text{ppm})$ |
|----------|---------------------------------------------------|------------------------|
| 2        | -                                                 | 156.8                  |
| 3        | 3.80(3H, <i>s</i> )                               | 137.7                  |

| 4                      | -                                     | 178.8 |
|------------------------|---------------------------------------|-------|
| 5                      | -                                     | 148.1 |
| 6                      | 3.90 (3H, <i>s</i> )                  | 135.4 |
| 7                      | 4.08 (3H, <i>s</i> )                  | 152.3 |
| 8                      | 3.94 (3H, <i>s</i> )                  | 132.5 |
| 9                      | -                                     | 144.6 |
| 10                     | -                                     | 106.8 |
| 1`                     | -                                     | 120.7 |
| 2`,6`                  | 8.05 (2H, <i>d</i> , <i>J</i> = 9 Hz) | 129.9 |
| 3`,5`                  | 6.94 (2H, <i>d</i> , <i>J</i> = 9 Hz) | 115.2 |
| 4`                     | -                                     | 159.9 |
| (7-OCH <sub>3</sub> )  | -                                     | 61.5  |
| (8- OCH <sub>3</sub> ) | -                                     | 61.0  |
| (6- OCH <sub>3</sub> ) | -                                     | 60.5  |
| (3- OCH <sub>3</sub> ) | -                                     | 59.3  |

#### Table 6: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CD<sub>3</sub>OD spectra data of compound (6)



| Position | $\delta_H$ ppm ( No. of H, $m, J$ Hz) |  |
|----------|---------------------------------------|--|
| 2        | -                                     |  |
| 3        | 3.77(3H, <i>s</i> )                   |  |
| 4        | -                                     |  |
| 5        | -                                     |  |
| 6        | 6.21(1H , <i>d</i> ,J= 2.1 Hz)        |  |
| 7        |                                       |  |
| 8        | 6.42(1H, <i>d</i> ,J= 1.8 Hz)         |  |
| 9        | -                                     |  |
| 10       | -                                     |  |
| 1`       | -                                     |  |
| 2`,6`    | 7.97(2H , <i>d</i> ,J= 9 Hz)          |  |
| 3`,5`    | 6.94(2H, <i>d</i> , J= 9 Hz)          |  |
| 4`       | -                                     |  |

#### Table 7: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CDCl<sub>3</sub> spectra data of compound (7)



| Position | $\delta_H$ ppm (No. of H, <i>m</i> , <i>J</i> Hz) | $\delta_C(\text{ppm})$ |
|----------|---------------------------------------------------|------------------------|
| 1        | -                                                 | 33.6                   |
| 2        | -                                                 | 25.3                   |
| 3        | 3.40 (1H, <i>b t</i> , <i>J</i> =2.9Hz)           | 76.2                   |
| 4        | -                                                 | 37.2                   |
| 5        | -                                                 | 49.4                   |
| 6        | -                                                 | 18.2                   |
| 7        | -                                                 | 34.5                   |
| 8        | -                                                 | 41.1                   |
| 9        | -                                                 | 50.4                   |
| 10       | -                                                 | 37.6                   |
| 11       | -                                                 | 21.3                   |
| 12       | -                                                 | 22.8                   |
| 13       | -                                                 | 45.9                   |
| 14       | -                                                 | 49.9                   |
| 15       | -                                                 | 32.5                   |
| 16       | -                                                 | 36.2                   |
| 17       | -                                                 | 83.4                   |
| 18       | 0.85 (3H, s)                                      | 16.1                   |
| 19       | 0.87 (3H, s)                                      | 15.7                   |
| 20       | -                                                 | 92.9                   |
| 21       | 1.44 (3H, <i>s</i> )                              | 22.9                   |
| 22       | -                                                 | 29.2                   |
| 23       | 2.54-2.72 (2H, <i>m</i> )                         | 29.2                   |
| 24       | -                                                 | 176.7                  |
| 25       | -                                                 | -                      |
| 26       | -                                                 | -                      |
| 27       | -                                                 | _                      |

| 28 | 0.97 (3H, s)         | 28.3 |
|----|----------------------|------|
| 29 | 1.17 (3H, s)         | 22.1 |
| 30 | 0.95 (3H, <i>s</i> ) | 17.0 |

Table 8: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CDCl3 spectra data of compound (8)



| $\delta_H$ | ppm (No. of H, <i>m</i> , <i>J</i> Hz)               | $\delta_C(\text{ppm})$                                                                                                                                                                |
|------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                      | 36.0                                                                                                                                                                                  |
|            |                                                      | 29.4                                                                                                                                                                                  |
|            |                                                      | 98.2                                                                                                                                                                                  |
|            |                                                      | 40.4                                                                                                                                                                                  |
|            |                                                      | 49.4                                                                                                                                                                                  |
|            |                                                      | 19.7                                                                                                                                                                                  |
|            |                                                      | 33.3                                                                                                                                                                                  |
|            |                                                      | 39.2                                                                                                                                                                                  |
|            |                                                      | 45.2                                                                                                                                                                                  |
|            |                                                      | 35.4                                                                                                                                                                                  |
|            |                                                      | 22.6                                                                                                                                                                                  |
|            |                                                      | 27.3                                                                                                                                                                                  |
|            |                                                      | 43.1                                                                                                                                                                                  |
|            |                                                      | 49.5                                                                                                                                                                                  |
|            |                                                      | 31.3                                                                                                                                                                                  |
|            |                                                      | 25.5                                                                                                                                                                                  |
|            |                                                      | 49.9                                                                                                                                                                                  |
|            | 0.83 (3H, <i>s</i> )                                 | 15.1                                                                                                                                                                                  |
| 19a<br>19b | 4.22 (1H, dd, J=8.8 Hz)<br>3 71 (1H, br d, J=8.1 Hz) | - 68.0                                                                                                                                                                                |
| 170        | 5.71 (111, 67 <i>a</i> , 5 – 6.1 112)                | 86.3                                                                                                                                                                                  |
|            | 1.19(3H,s)                                           | 23.2                                                                                                                                                                                  |
|            | , (, .)                                              | 35.5                                                                                                                                                                                  |
|            |                                                      | 26.2                                                                                                                                                                                  |
|            | 3.70(1H m)                                           | 83.2                                                                                                                                                                                  |
|            |                                                      | 71.5                                                                                                                                                                                  |
|            | δ <sub>H</sub>                                       | $ \frac{\delta_{H} \text{ ppm (No. of H, m, J Hz)}}{0.83 (3H, s)} \\ = 0.83 (3H, s) \\ 19a 4.22 (1H, dd, J=8.8 Hz) \\ 19b 3.71 (1H, br d, J=8.1 Hz) \\ 1.19 (3H, s) \\ 3.70 (1H, m) $ |

| 26 | 1.11 (6H, <i>s</i> ) | 26.7 |
|----|----------------------|------|
| 27 | Overlapped           | 24.3 |
| 28 | 1.01 (3H, <i>s</i> ) | 27.3 |
| 29 | 0.97 (3H, <i>s</i> ) | 18.4 |
| 30 | 0.87 (3H, <i>s</i> ) | 15.9 |

Table 9: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CDCl<sub>3</sub> spectra data of compound (9)



| Position |                           | $\delta_H$ ppm (No. of H, <i>m</i> , <i>J</i> Hz) | $\delta_C(\text{ppm})$ |  |
|----------|---------------------------|---------------------------------------------------|------------------------|--|
| 1        | 1a                        | 1.87 (1H, <i>m</i> )                              | 33.6                   |  |
| 1        | 1b                        | 1.32 (1H, <i>m</i> )                              | 55.0                   |  |
| 2        | 2a                        | 1.92 (1H, <i>m</i> )                              | 253                    |  |
|          | 2b                        | 1.89 (1H, <i>m</i> )                              | 23.5                   |  |
| 3        |                           | 3.48 (1H, <i>br s</i> )                           | 76.2                   |  |
| 4        |                           | -                                                 | 37.2                   |  |
| 5        |                           | 1.85 (1H, <i>m</i> )                              | 49.5                   |  |
| 6        |                           | 1.67-1.42 (2H, <i>m</i> )                         | 18.2                   |  |
| 7        | 7a                        | 1.24 (1H, <i>m</i> )                              | 24.6                   |  |
| /        | 7b                        | 1.22 (1H, <i>m</i> )                              | 54.0                   |  |
| 8        |                           | -                                                 | 40.6                   |  |
| 9        | 1.70 (1H, <i>m</i> )      |                                                   | 50.8                   |  |
| 10       | -                         |                                                   | 37.6                   |  |
| 11       | 11a                       | 1.72 (1H, <i>m</i> )                              | 21.5                   |  |
| 11       | 11b                       | 1.26 (1H, <i>m</i> )                              | 21.3                   |  |
| 12       | 1.67-1.42 (2H, <i>m</i> ) |                                                   | 23.7                   |  |
| 13       | 1.36 (1H, <i>m</i> )      |                                                   | 44.3                   |  |
| 14       | -                         |                                                   | 49.6                   |  |
| 15       | 15a                       | 1.20 (1H, <i>m</i> )                              | 21.0                   |  |
| 15       | 15b                       | 1.11 (1H, <i>m</i> )                              | 51.0                   |  |
| 16       | 16a                       | 2.04 (1H, <i>m</i> )                              | 37.7                   |  |
|          | 16b                       | 1.70 (1H, <i>m</i> )                              |                        |  |
| 17       | -                         |                                                   | 89.3                   |  |
| 18       | 0.95 (3H, <i>s</i> )      |                                                   | 15.5                   |  |
| 19       | 0.88 (3H, s)              |                                                   | 16.2                   |  |
| 20       | -                         |                                                   | 91.3                   |  |
| 21       | 1.27 (3H, s)              |                                                   | 16.2                   |  |
| 22       | 22a 1.97 (1H, <i>m</i> )  |                                                   | 32.1                   |  |

|    | 22b | 1.35 (1H, <i>m</i> )     |       |
|----|-----|--------------------------|-------|
| 23 | 23a | 23a 2.14 (1H, <i>m</i> ) |       |
|    | 23b | 1.90 (1H, <i>m</i> )     | 51.9  |
| 24 |     | -                        | 112.6 |
| 25 |     | -                        | 70.3  |
| 26 |     | 1.41 (3H, <i>s</i> )     | 25.5  |
| 27 |     | 1.29 (3H, <i>s</i> )     |       |
| 28 |     | 1.03 (3H, s)             |       |
| 29 |     | 0.85 (3H, <i>s</i> )     | 22.0  |
| 30 |     | 0.95 (3H, <i>s</i> )     | 18.1  |

Table 10: <sup>1</sup>H-NMR (300 MHz) and <sup>13</sup>C-NMR (75 MHz) in CDCl<sub>3</sub> spectra data of compound (10)



| Position | $\delta H$ ppm (No. of H, <i>m</i> , <i>J</i> Hz) | <i>δC</i> (ppm) |
|----------|---------------------------------------------------|-----------------|
| 1        | -                                                 | 37.2            |
| 2        | -                                                 | 29.7            |
| 3        | 3.51 (1H, <i>m</i> )                              | 71.8            |
| 4        | -                                                 | 42.3            |
| 5        | -                                                 | 140.7           |
| 6        | 5.35 (1H, <i>m</i> )                              | 121.7           |
| 7        |                                                   | 31.9            |
| 8        |                                                   | 31.6            |
| 9        |                                                   | 50.1            |
| 10       |                                                   | 36.5            |
| 11       |                                                   | 21.1            |
| 12       |                                                   | 39.7            |
| 13       |                                                   | 42.3            |
| 14       |                                                   | 56.7            |
| 15       |                                                   | 24.3            |
| 16       |                                                   | 28.2            |
| 17       |                                                   | 56.0            |
| 18       | 0.69 (3H, <i>s</i> )                              | 12.0            |
| 19       | 1.02 (3H, <i>s</i> )                              | 19.4            |
| 20       |                                                   | 36.1            |

| 21 | 0.92 (3H, d, <i>J</i> =6.6 Hz)         | 18.8 |
|----|----------------------------------------|------|
| 22 |                                        | 33.9 |
| 23 |                                        | 26.0 |
| 24 |                                        | 45.8 |
| 25 |                                        | 29.1 |
| 26 | 0.83 (3H, <i>d</i> , <i>J</i> =6.9 Hz) | 19.8 |
| 27 | 0.81 (3H, <i>d</i> , <i>J</i> =6.1 Hz) | 19.0 |
| 28 |                                        | 23.0 |
| 29 | 0.86 (3H, <i>m</i> )                   | 11.8 |



m/z

- Scan #1037 Peaks in Aligned feature list isotopes and ms2 filtered 579.1666 m/z @2.83 [Pos\_AB-AE.mzML]

Figure 1: LC-MS/MS of compound 1























Figure 12: <sup>13</sup>C-NMR spectrum of compound 2 (100 MHz, DMSO-*d6*)





Figure 14: Partial expansion of <sup>13</sup>C-NMR spectrum of compound 2 (100 MHz, DMSO-*d6*)





Figure 16: Partial expansion of <sup>1</sup>H-NMR spectrum of compound 3 (300 MHz, CDCl<sub>3</sub>-CD<sub>3</sub>OD)


Figure 17: Partial expansion of <sup>1</sup>H-NMR spectrum of compound 3 (300 MHz, CDCl<sub>3</sub>-CD<sub>3</sub>OD)



Figure 18: Partial expansion of <sup>1</sup>H-NMR spectrum of compound 3 (300 MHz, CDCl<sub>3</sub>-CD<sub>3</sub>OD)





Figure 20: Partial expansion of <sup>13</sup>C-NMR spectrum of compound 3 (75 MHz, CDCl<sub>3</sub>-CD<sub>3</sub>OD)









Figure 24: Partial expansion of <sup>1</sup>H -NMR spectrum of compound 4 (300 MHz, CDCl<sub>3</sub>)















Figure 31: Partial expansion of <sup>1</sup>H-NMR spectrum of compound 5 (300 MHz, CDCl<sub>3</sub>-CD<sub>3</sub>OD)



















m/z

## Figure 39: LC-MS/MS of compound 7









Figure 43: <sup>13</sup>C-NMR spectrum of compound 7 (75 MHz, CDCl<sub>3</sub>)





Figure 45: Partial expansion of <sup>13</sup>C-NMR spectrum of compound 7 (75 MHz, CDCl<sub>3</sub>)







Figure 48: Partial expansion of <sup>1</sup>H-NMR spectrum of compound 8 (300 MHz, CDCl<sub>3</sub>)






Figure 51: Partial expansion of <sup>13</sup>C-NMR spectrum of compound 8 (75 MHz, CDCl<sub>3</sub>)





Figure 53: <sup>1</sup>H-NMR spectrum of compound 9 (300 MHz, CDCl<sub>3</sub>)









Figure 57: <sup>1</sup>H-NMR spectrum of compound 10 (300 MHz, CDCl<sub>3</sub>)



Figure 58: Partial expansion of <sup>1</sup>H-NMR spectrum of compound 10 (300 MHz, CDCl<sub>3</sub>)





