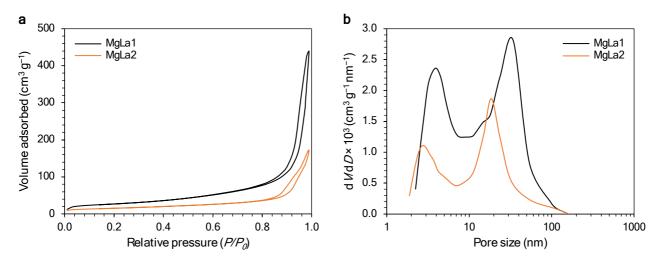
Supplementary Information

Elucidating the role of potassium addition on the surface chemistry and catalytic properties of cobalt catalysts for ammonia synthesis


Hubert Ronduda ^{a*}, Magdalena Zybert ^a, Wojciech Patkowski ^a, Andrzej Ostrowski ^a, Kamil Sobczak ^b, Dariusz Moszyński ^c, Wioletta Raróg-Pilecka ^a

^a Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664, Warsaw, Poland

^b University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warsaw, Poland ^c West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Puławskiego 10, 70-322 Szczecin, Poland

*Corresponding author e-mail: <u>hubert.ronduda@pw.edu.pl</u> tel. +48 22 234 7602

Number of pages: 5 Number of figures: 6 Number of tables: 2

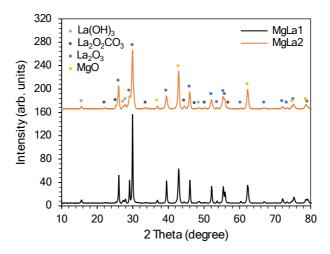
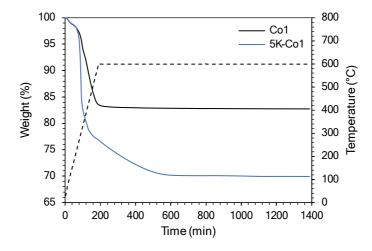
Figure S1. (a) N_2 adsorption-desorption isotherms and (b) the corresponding pore size distribution curves of the support materials.

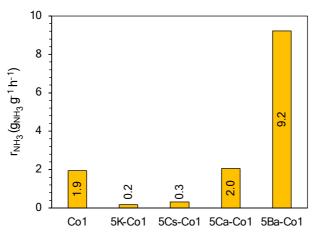
Table S1. Textural parameters of the support materials.

Support	MgLa1	MgLa2
Specific surface area ^a (m ² g ⁻¹)	96.7	53.9
Total pore volume ^b (cm ³ g ⁻¹)	0.681	0.268
Average pore diameter ^b (nm)	21.2	17.7

^a Determined by BET method.

^b Determined by BJH method from the desorption branch of the isotherm curves.


Figure S2. XRD patterns of the support materials.

Catalyst	K content (wt%)
Co1	0.08
0.5K-Co1	0.46
1K-Co1	0.91
3K-Co1	2.59
5K-Co1	4.19
7K-Co1	5.71
9K-Co1	7.18

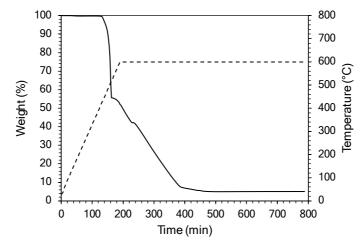

Table S2. The K content in the as-prepared catalysts measured by XRF.

Figure S3. TPR-TGA profiles of the as-prepared Co catalysts. The TGA-TPR profile of the as-prepared Co1 revealed that the reduction was completed at around 600 °C, suggesting that the loaded Co metal species was reduced to the metal phase. When holding at 600 °C for 20 h, no further mass losses were observed. The TGA-TPR profile of the as-prepared 5K-Co1 revealed that the reduction was notably more hindered compared to the as-prepared Co1. This was caused by the potassium addition. The activation of 5K-Co1 was completed after 10 h of heating at 600 °C. However, it seems that the reduction of Co metal species was completed at around 600 °C and further heating at 600 °C for 10 h made it possible to reduce K₂O to metallic K, which was subsequently evaporated. This is very likely since KNO₃ exhibited a similar TGA-TPR profile (Figure S5) to that of the as-prepared 5K-Co1. Moreover, based on the total mass loss, it was deduced that almost all K introduced was evaporated; XRF and ICP analyses confirmed it (Table 1). *Measurement conditions: 100 mL min⁻¹ H₂/Ar (50/50 vol%), 100 mg sample, 30–600* °C (3 °C min⁻¹) with holding at 600 °C for 20 h.

Figure S4. Comparison of the catalytic performance for ammonia synthesis of the Co catalysts. *Reaction conditions:* 470 °C, 6.3 MPa, 70 L h^{-1} H₂/N₂ (75/25 mol%).

Figure S5. TGA-TPR profile of the KNO₃ salt. The TGA-TPR profile revealed a total mass loss of ~95% related to the decomposition of KNO₃ to K₂O. K₂O was then reduced to metallic K, which was prone to evaporate (K volatilises at around 400 °C [1]). This explains why almost complete mass loss of KNO₃ salt was observed; however, some residual amount of K₂O was not reduced. *Measurement conditions: 100 mL min⁻¹ H₂/Ar (50/50 vol%), 100 mg sample, 30–600* °C (3 °C min⁻¹) with holding at 600 °C for 10 h.

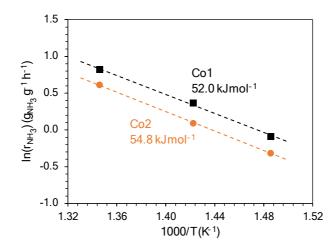


Figure S6. Arrhenius plots for ammonia synthesis over the Co1 and Co2 catalysts at 6.3 MPa.

References

 J.-H. Kim, T.-Y. Dai, M. Yang, J.-M. Seo, J. S. Lee, D. H. Kweon, X.-Y. Lang, K. Ihm, T. J. Shin, G.-F. Han, Q. Jiang, J.-B. Baek. Achieving volatile potassium promoted ammonia synthesis via mechanochemistry. *Nat. Commun.*, 2023, **14**, 2319. <u>https://doi.org/10.1038/s41467-023-38050-2</u>