Supplementary Materials

Synthesis and Evaluation of Sulfonamide Derivatives of Quinoxaline 1,4dioxides as Carbonic Anhydrase Inhibitors

Galina I. Buravchenko^a, Alexander M. Scherbakov^b, Diana I. Salnikova^b, Stepan K. Krymov^a, George V. Zatonsky^a, Dominique Schols^c, Daniela Vullo,^d Claudiu T. Supuran^d, Andrey E. Shchekotikhin^{a*}

^a Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia;
<u>buravchenkogi@gmail.com</u>; <u>krymov.s.k@gmail.com</u>; <u>gzatonsk@gmail.com</u>; <u>shchekotikhin@mail.ru</u>
^b Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoe sh. 24, 115522 Moscow, Russia; <u>dianasalnikova08@yandex.ru</u>; <u>alex.scherbakov@gmail.com</u>.

^c Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium, <u>dominique.schols@kuleuven.be</u>.

^d Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy, <u>daniela.vullo@unifi.it</u>; <u>claudiu.supuran@unifi.it</u>.

*Corresponding authors e-mail address: Andrey E. Shchekotikhin <u>shchekotikhin@gause-inst.ru</u>.

Legends to Figures and Tables

Figure S1-S36. ¹ H and ¹³ C NMR spectra of the compounds 7a-h; 8a-c; 8g; 11-12; 14-16.	S2
Figure S37-S53. Copies of HRMS ESI spectra of the compounds 7a-h; 8a-c; 8g; 11-12; 14-16.	S20
Figure S55-S67. Copies of HPLC spectra of the compounds 7a-h; 8a-c; 8g.	S38
Figure S68-S70. Copies of 2D NMR spectra of 7a.	S5 1

Copies of NMR Spectra

Figure S2. Copy of ¹³C NMR spectrum of the derivative 7a.

Figure S3. Copy of ¹H NMR spectrum of the derivative 7b.

Figure S5. Copy of ¹H NMR spectrum of the derivative 7c.

Figure S7. Copy of ¹H NMR spectrum of the derivative 7d.

Figure S9. Copy of ¹H NMR spectrum of the derivative 7e.

Figure S10. Copy of ¹³C NMR spectrum of the derivative 7e.

Figure S11. Copy of ¹H NMR spectrum of the derivative 7f.

Figure S12. Copy of ¹³C NMR spectrum of the derivative 7f.

Figure S13. Copy of ¹H NMR spectrum of the derivative 7g.

Figure S14. Copy of ¹³C NMR spectrum of the derivative 7g.

Figure S15. Copy of ¹H NMR spectrum of the derivative 7h.

Figure S16. Copy of ¹³C NMR spectrum of the derivative 7h.

Figure S18. Copy of ¹³C NMR spectrum of the derivative 8a.

Figure S19. Copy of ¹H NMR spectrum of the derivative 8b.

Figure S20. Copy of ¹³C NMR spectrum of the derivative 8b.

Figure S22. Copy of ¹³C NMR spectrum of the derivative 8c.

Figure S23. Copy of ¹H NMR spectrum of the derivative 8g.

Figure S24. Copy of ¹³C NMR spectrum of the derivative 8g.

Figure S25. Copy of ¹H NMR spectrum of the derivative 11.

Figure S26. Copy of ¹³C NMR spectrum of the derivative 11.

Figure S27. Copy of ¹H NMR spectrum of the derivative 12.

Figure S28. Copy of ¹³C NMR spectrum of the derivative 12.

Figure S29. Copy of ¹H NMR spectrum of the derivative 14.

Figure S32. Copy of ¹³C NMR spectrum of the derivative 15.

Figure S33. Copy of ¹H NMR spectrum of the derivative 16.

Figure S34. Copy of ¹³C NMR spectrum of the derivative 16.

Figure S35. Copy of ¹H NMR spectrum of the derivative 18.

Copies of HRMS ESI Analysis

Figure S37. Copy of HRMS ESI analysis of the derivatives 7a.

+MS, 0.1-0.3min #(3-17)

-MS, 0.0-0.1min #(2-6)

+MS, 0.0-0.2min #(2-13)

	+MS, 0.0-0.2min #(2-13)
1+ (A) 333.0393	
	2571.9283

#	m/z	Res.	S/N	- I	۱%
1	301.0405			2756	14.3
2	317.0633			3477	18.1
3	333.0393			19225	100.0
4	342.0657			3007	15.6
5	344.0780			6008	31.3
6	360.0810			2626	13.7
7	384.1094			2028	10.5
8	403.1100			1976	10.3

+MS, 0.0-0.2min #(2-10)

+MS, 0.0-0.1min #(2-7)

+MS, 0.0-0.3min #(2-15)

	+MS, 0.0-0.3min #(2-15)
1+ (A) 328.0603	
1+ (B)	
655.1121	

#	t m/z	Res.	S/N	I.	۱%
1	328.0603	5814	3401.6	741290	100.0
2	329.0631	6243	514.2	112606	15.2
3	361.2220	6018	244.8	56907	7.7
4	381.2971	6615	251.0	58908	7.9
5	383.2010	6507	262.9	61743	8.3
6	431.1621	6652	363.4	87290	11.8
7	531.2155	6832	250.4	63087	8.5
8	655.1121	7233	1196.8	322891	43.6
9	656.1158	7503	354.4	95995	12.9
10	982.1678	7493	289.5	60284	8.1

+MS, 0.1-0.4min #(5-21)

+MS, 0.2-0.3min #(10-18)

Figure S45. Copy of HRMS ESI analysis of the derivatives 8a.

Figure S46. Copy of HRMS ESI analysis of the derivatives 8b.

+MS, 0.0-0.1min #(2-6)

-MS, 0.0-0.2min #(2-13)

#	m/z	Res.	S/N	I	۱%
1	299.0126	5155	55.1	4632	5.7
2	300.0150	5279	226.7	15650	19.1
3	301.0118	5276	95.7	6663	8.2
4	315.0055	5579	484.4	36424	44.6
5	316.0097	5350	96.9	7351	9.0
6	333.0300	5153	1193.0	81747	100.0
7	599.9871	6032	189.8	14429	17.7
8	600.0330	6136	63.3	4854	5.9
9	615.0251	6076	90.7	6959	8.5
10	635.0059	6196	99.4	7670	9.4

+MS, 0.0-0.2min #(2-9)

-MS, 0.1-0.2min #(3-14)

-MS, 0.1-0.1min #(3-8)

+MS, 0.1-0.2min #(3-10)

+MS, 0.1-0.2min #(3-10)

+MS, 0.0-0.2min #(2-10)

, 0.0 0.211111 // (2 10)

#	m/z	Res.	S/N	I.	۱%
1	315.0731			75307	100.0
2	629.1402			30153	40.0
3	651.1200			12670	16.8
4	1295.2211			12511	16.6
5	1609.2884			23044	30.6

-MS, 0.1-0.3min #(4-15)

Copies of HPLC Analysis

Figure S55. Copy HPLC analysis of the derivative 7a.

Method Filename: FOS Cv.lcm19.02.2024 13:19:56TimeUnitCommandValu0.01PumpsB.Conc2030.00PumpsB.Conc8033.00PumpsB.Conc2045.00ControllerStop

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Figure S56. Copy HPLC analysis of the derivative 7b.

Figure S57. Copy HPLC analysis of the derivative 7c.

Figure S58. Copy HPLC analysis of the derivative 7d.

Method Filename

: FOS Cv.lcm 15.02.2024 11:49:35

TimeUnitCommandValu0.01PumpsB.Conc4030.00PumpsB.Conc8033.00PumpsB.Conc4045.00ControllerStop

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Peak#	Ret Time	Area	Height	Area %
1 0000	14.181	3243431	295737	95.697
2	14.571	125395	11383	3.700
3	24 678	20460	960	0.604
Total	21.070	3389286	308080	100.000

	Me	thod	
< <lc program="">></lc>			
Time	Unit	Command	Value
0.10	Pumps	B.Conc	10
30.00	Pumps	B.Conc	50
33.00	Pumps	B.Conc	10
45.00	Controller	Stop	

Method Filename : FOS A.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S64. Copy HPLC analysis of the derivative 8b.

Figure S65. Copy HPLC analysis of the derivative 8c.

Method Filename : FOS A.lcm

.103 A.IGII

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S67. Copy HPLC analysis of the derivative 18.

PDA Ch1 300nm 4nm Peak# Ret. Time 1 12.389 Area % 0.555 97.230 Area Height 554 112361 5360 939375 13.610 2 501 0.410 3 17.703 3962 0.497 1.309 100.000 4798 588 18.055 4 12646 1515 20.128 5 966140 115519 Total

	Me	ethod	
< <lc program="">></lc>			
Time	Unit	Command	Value
0.10	Pumps	B.Conc	30
30.00	Pumps	B.Conc	80
33.00	Pumps	B.Conc	90
35.00	Pumps	B.Conc	30
45.00	Controller	Stop	

Method Filename : FOS Bv.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18,.size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Copies of 2D NMR Spectra of 7a.

Figure S70. Selective NOE spectrum at H-5 at 7.75 ppm for compound 7a.

BG-311 DMSO-d6 SelNOE at 7.751 ppm

